\[\boxed{\mathbf{52}.}\]
\[\textbf{а)}\ y = x^{2};\ \ x = 0;\ \ x = 2;\ \ \]
\[y = 0:\]
\[\int_{0}^{2}{x^{2}\text{dx}} = \left. \ \frac{x^{3}}{3} \right|_{0}^{2} = \frac{2^{3}}{3} - \frac{0^{3}}{3} =\]
\[= \frac{8}{3}\ (кв.\ ед.) - площадь\ \]
\[фигуры.\]
\[\textbf{б)}\ y = \sin x;\ \ x = 0;\ \ x = \pi;\ \ \]
\[y = 0:\]
\[\int_{0}^{\pi}{\sin x\text{dx}} = \left. \ - \cos x \right|_{0}^{\pi} =\]
\[= - \cos{\pi - \left( - \cos 0 \right)} =\]
\[= - ( - 1) + 1 = 2\ (кв.\ ед.) -\]
\[площадь\ фигуры.\]
\[\textbf{в)}\ y = \cos x;\ \ x = 0;\ \ x = \frac{\pi}{2};\ \ \]
\[y = 0:\]
\[\int_{0}^{\frac{\pi}{2}}{\cos x\text{dx}} = \left. \ \sin x \right|_{0}^{\frac{\pi}{2}} =\]
\[= \text{sin\ }{\frac{\pi}{2} - \left( \text{sin\ }0 \right)} = 1 - 0 =\]
\[= 1\ (кв.\ ед.) - площадь\ \]
\[фигуры.\]