\[\boxed{\mathbf{50}.}\]
\[\textbf{а)}\ \int_{0}^{\frac{\pi}{2}}{\cos x\text{dx}};\]
\[F(x) = \sin x;\]
\[\int_{0}^{\frac{\pi}{2}}{\cos x\text{dx}} = \sin\frac{\pi}{2} - \sin 0 =\]
\[= 1 - 0 = 1.\]
\[\textbf{б)}\ \int_{0}^{\pi}{\cos x\text{dx}};\]
\[F(x) = \sin x;\]
\[\int_{0}^{\pi}{\cos x\text{dx}} = \sin\pi - \sin 0 =\]
\[= 0 - 0 = 0.\]
\[\textbf{в)}\ \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}{\cos x\text{dx}};\]
\[F(x) = \sin x;\]
\[\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}{\cos x\text{dx}} =\]
\[= \sin\frac{\pi}{2} - \sin\left( - \frac{\pi}{2} \right) =\]
\[= 1 - ( - 1) = 2.\]