\[\boxed{\mathbf{7}\mathbf{.}}\]
\[\textbf{а)}\ y = \sqrt[3]{x} = x^{\frac{1}{3}};\ \ \lbrack - 1;1\rbrack\]
\[f^{'}(x) = \left( x^{\frac{1}{3}} \right)^{'} = \frac{1}{3}x^{- \frac{2}{3}} = \frac{1}{3\sqrt[3]{x^{2}}};\]
\[\frac{1}{3\sqrt[3]{x^{2}}} = 0\]
\[не\ имеет\ корней.\]
\[При\ x = 0\ производная\ \]
\[функции\ y = \sqrt[3]{x}\ не\ \]
\[существует.\]
\[0 \in \lbrack - 1;1\rbrack - критическая\]
\[\ точка.\]
\[Ответ:0.\]
\[\textbf{б)}\ y = \sqrt[5]{x} = x^{\frac{1}{5}};\ \ \lbrack - 2;2\rbrack\]
\[f^{'}(x) = \left( x^{\frac{1}{5}} \right)^{'} = \frac{1}{5}x^{- \frac{4}{5}} = \frac{1}{5\sqrt[5]{x^{4}}};\]
\[\frac{1}{5\sqrt[5]{x^{4}}} = 0\]
\[не\ имеет\ корней.\]
\[При\ x = 0\ производная\]
\[\ функции\ y = \sqrt[5]{x}\ не\]
\[\ существует.\]
\[0 \in \lbrack - 2;2\rbrack - критическая\ \]
\[точка.\]
\[Ответ:0.\]
\[\textbf{в)}\ y = 4\sqrt{x} - x = 4 \cdot x^{\frac{1}{2}} - x;\]
\[\ \ (0;5\rbrack\]
\[f^{'}(x) = 4 \cdot \frac{1}{2}x^{- \frac{1}{2}} - 1 = \frac{2}{\sqrt{x}} - 1;\]
\[\frac{2}{\sqrt{x}} - 1 = 0\]
\[\frac{2}{\sqrt{x}} = 1\]
\[\sqrt{x} = 2\]
\[x = 4.\]
\[4 \in (0;5\rbrack - критическая\ точка.\]
\[Ответ:4.\]
\[\textbf{г)}\ y = 2\sqrt{x} - x = 2x^{\frac{1}{2}} - x;\ \ (0;2\rbrack\]
\[f^{'}(x) = 2 \cdot \frac{1}{2} \cdot x^{- \frac{1}{2}} - 1 = \frac{1}{\sqrt{x}} - 1;\]
\[\frac{1}{\sqrt{x}} - 1 = 0\]
\[\frac{1}{\sqrt{x}} = 1\]
\[\sqrt{x} = 1\]
\[x = 1.\]
\[1 \in (0;2\rbrack - критическая\ точка.\]
\[Ответ:1.\]