\[\boxed{\mathbf{6}\mathbf{.}}\]
\[\textbf{а)}\ y = 2x^{3} - 3x^{2}\]
\[y^{'}(x) = 2 \cdot 3x^{2} - 3 \cdot 2x =\]
\[= 6x^{2} - 6x;\]
\[6x^{2} - 6x = 0\]
\[6x(x - 1) = 0\]
\[x = 0 \in \lbrack - 3;3\rbrack;\ \ \]
\[x = 1 \in \lbrack - 3;3\rbrack.\]
\[Ответ:критические\ точки\ \]
\[x = 0;x = 1.\]
\[\textbf{б)}\ y = 5x^{3} - 15x\]
\[y^{'}(x) = 5 \cdot 3x^{2} - 15 =\]
\[= 15x^{2} - 15;\]
\[15x^{2} - 15 = 0\]
\[15 \cdot \left( x^{2} - 1 \right) = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[x = - 1 \in \lbrack - 2;2\rbrack;\]
\[x = 1 \in \lbrack - 2;2\rbrack.\]
\[Ответ:критические\ точки\]
\[\ x = \pm 1.\]
\[\textbf{в)}\ y = 3x^{4} + x^{3} + 7\]
\[y^{'}(x) = 3 \cdot 4x^{3} + 3x^{2} + 0 =\]
\[= 12x^{3} + 3x^{2};\]
\[12x^{3} + 3x^{2} = 0\]
\[12x^{2}\left( x + \frac{1}{4} \right) = 0\]
\[x = 0;\ \ x = - \frac{1}{4} = - 0,25.\]
\[x = 0 \in \lbrack - 3;2\rbrack;\]
\[x = - 0,25 \in \lbrack - 3;2\rbrack.\]
\[Ответ:критические\ точки\ \]
\[x = 0;x = - 0,25.\]
\[\textbf{г)}\ y = x^{4} - 4x^{2}\]
\[y^{'}(x) = 4x^{3} - 4 \cdot 2x =\]
\[= 4x^{3} - 8x;\]
\[4x^{3} - 8x = 0\]
\[4x\left( x^{2} - 2 \right) = 0\]
\[x = 0;\ \ x = \pm \sqrt{2}.\]
\[x = 0\ \in \left\{ - 4;4 \right\rbrack;\]
\[x = - \sqrt{2} \in \lbrack - 4;4\rbrack;\]
\[x = \sqrt{2} \in \lbrack - 4;4\rbrack.\]
\[Ответ:критические\ точки\ \]
\[x = 0;x = \pm \sqrt{2}.\]