\[\boxed{\mathbf{43}\mathbf{.}}\]
\[f\left( x_{0} + \mathrm{\Delta}x \right) \approx f\left( x_{0} \right) + f^{'}\left( x_{0} \right)\mathrm{\Delta}x\]
\[\textbf{а)}\ tg\ 47{^\circ}\]
\[x_{0} = 45{^\circ};\]
\[f\left( x_{0} \right) = 1;\]
\[\mathrm{\Delta}x = 1;\]
\[\mathrm{\Delta}x = 45{^\circ} - 47{^\circ} = - 2{^\circ} \approx 0,035;\]
\[f^{'}(x) = \frac{1}{\cos^{2}x};\]
\[f^{'}(45{^\circ}) = 2.\]
\[tg\ 47{^\circ} = 1 + 2 \cdot 0,035 = 1,07.\]
\[\textbf{б)}\ tg\ 2{^\circ}\]
\[x_{0} = 0{^\circ}\]
\[f\left( x_{0} \right) = 0;\]
\[\mathrm{\Delta}x = 2{^\circ} - 0{^\circ} = 2{^\circ} \approx 0,035;\]
\[f^{'}(x) = \frac{1}{\cos^{2}x};\]
\[f^{'}(0{^\circ}) = 1;\]
\[tg\ 2{^\circ} = 0 + 1 \cdot 0,035 = 0,035.\]
\[\textbf{в)}\ ctg\ 46{^\circ}\ \]
\[x_{0} = 45{^\circ};\]
\[f\left( x_{0} \right) = 1;\]
\[\mathrm{\Delta}x = 46{^\circ} - 45{^\circ} = 1{^\circ} \approx 0,0175;\]
\[f^{'}(x) = - \frac{1}{\sin^{2}x};\]
\[f^{'}(45{^\circ}) = - 2;\]
\[ctg\ 46{^\circ}\ \approx 1 - 2 \cdot 0,0175 =\]
\[= 1 - 0,035 = 0,965.\]
\[\textbf{г)}\ ctg\ 88{^\circ}\ \]
\[x_{0} = 90{^\circ};\]
\[f\left( x_{0} \right) = 0;\]
\[\mathrm{\Delta}x = - 2{^\circ} \approx 0,035;\]
\[f^{'}(x) = - \frac{1}{\sin^{2}x};\]
\[f^{'}(90{^\circ}) = - 1;\]
\[ctg\ 88{^\circ} = 0,035.\]