\[\boxed{\mathbf{34.}}\]
\[\textbf{а)}\ f(x) = x^{e};\ \ x_{0} = e\]
\[f^{'}(x) = ex^{e - 1};\]
\[k = f'(e) = ee^{e - 1} = e^{e};\]
\[y_{0} = f(e) = e^{e};\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y - e^{e} = e^{e}(x - e)\]
\[y - e^{e} = e^{e}x - e^{e + 1}\]
\[y = e^{e}x - e^{e + 1} + e^{e}.\]
\[\textbf{б)}\ f(x) = e^{x};\ \ x_{0} = e\ \]
\[f^{'}(x) = e^{x};\]
\[k = f^{'}(e) = e^{e};\]
\[y_{0} = f(e) = e^{e};\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y - e^{e} = e^{e}(x - e)\]
\[y - e^{e} = e^{e}x - e^{e + 1}\]
\[y = e^{e}x - e^{e + 1} + e^{e}.\]