\[\boxed{\mathbf{33.}}\]
\[\textbf{а)}\ y = x^{2} + x - 2;\ \ x = 0\]
\[y(0) = - 2;\]
\[(0; - 2) - точка\ пересечения\ \]
\[графика\ с\ \text{Oy.}\]
\[f^{'}(x) = 2x + 1;\]
\[f^{'}(0) = 1 = tg\ a\]
\[a = \frac{\pi}{4};\]
\[a + \beta = \frac{\pi}{2}\]
\[\beta = \frac{\pi}{2} - a = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.\]
\[Ответ:\ \ \frac{\pi}{4}.\]
\[\textbf{б)}\ y = 5x^{2} + 4x - 9;\]
\[y(0) = - 9;\]
\[(0; - 9) - точка\ пересечения\]
\[\ графика\ с\ \text{Oy.}\]
\[f^{'}(x) = 5x + 4;\]
\[f^{'}(0) = 4 = tg\ a\]
\[a = artg\ 4;\]
\[\beta = \frac{\pi}{2} - a = \frac{\pi}{2} - arctg\ 4.\]
\[Ответ:\ \frac{\pi}{2} - arctg\ 4.\]
\[\textbf{в)}\ y = 2x^{3} - 12x^{2} + x - 6;\]
\[y(0) = - 6;\]
\[(0; - 6) - точка\ пересечения\]
\[\ графика\ с\ \text{Oy.}\]
\[f^{'}(x) = 6x^{2} - 24x + 1;\]
\[f^{'}(0) = 1 = tg\ a\]
\[a = \frac{\pi}{4};\]
\[\beta = \frac{\pi}{2} - a = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.\]
\[Ответ:\ \frac{\pi}{4}.\]
\[\textbf{г)}\ y = x^{3} + 6x^{2} + 5x;\]
\[y(0) = 0;\]
\[(0;0) - точка\ пересечения\]
\[\ графика\ с\ \text{Oy.}\]
\[f^{'}(x) = 3x^{2} + 12x + 5;\]
\[f^{'}(0) = 5 = tg\ a\]
\[a = artg\ 5;\]
\[\beta = \frac{\pi}{2} - a = \frac{\pi}{2} - arctg\ 5.\]
\[Ответ:\ \frac{\pi}{2} - arctg\ 5.\ \]