\[\boxed{\mathbf{14}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{x^{4}}{4} - 2x^{2};\ \ \lbrack - 2;2\rbrack\]
\[y^{'} = \frac{1}{4} \cdot 4x^{3} - 2 \cdot 2x = x^{3} - 4x;\]
\[x^{3} - 4x = 0\]
\[x\left( x^{2} - 4 \right) = 0\]
\[x = 0;\ \ x = \pm 2.\]
\[- 2;0;2 \in \lbrack - 2;2\rbrack.\]
\[f( - 2) = \frac{16}{4} - 8 = 4 - 8 = - 4;\]
\[f(0) = 0;\]
\[f(2) = - 4.\]
\[\max{f(x)} = 0;\]
\[\min{f(x)} = - 4.\]
\[\textbf{б)}\ y = \frac{x^{4}}{4} - 2x^{2};\ \ ( - 2;2)\]
\[y^{'} = \frac{1}{4} \cdot 4x^{3} - 2 \cdot 2x = x^{3} - 4x;\]
\[x^{3} - 4x = 0\]
\[x\left( x^{2} - 4 \right) = 0\]
\[x = 0;\ \ x = \pm 2.\]
\[0 \in ( - 2;2);\]
\[f(0) = 0;\]
\[f( - 2) = - 4 \rightarrow ( - 2;0\rbrack -\]
\[функция\ возрастает;\]
\[f(2) = - 4 \rightarrow \lbrack 0; - 2) -\]
\[функция\ убывает.\]
\[\max{f(x)} = 0;\]
\[\min{f(x)} = нет.\]
\[\textbf{в)}\ y = \frac{x^{4}}{4} - 2x^{2};\ \ ( - 2;2\rbrack\]
\[y^{'} = \frac{1}{4} \cdot 4x^{3} - 2 \cdot 2x = x^{3} - 4x;\]
\[x^{3} - 4x = 0\]
\[x\left( x^{2} - 4 \right) = 0\]
\[x = 0;\ \ x = \pm 2.\]
\[0;2 \in ( - 2;2\rbrack.\]
\[f(0) = 0;\]
\[f(2) = - 4.\]
\[\max{f(x)} = 0;\]
\[\min{f(x)} = - 4.\]
\[\textbf{г)}\ y = \frac{x^{4}}{4} - 2x^{2};\ \ \lbrack - 2;2)\]
\[y^{'} = \frac{1}{4} \cdot 4x^{3} - 2 \cdot 2x = x^{3} - 4x;\]
\[x^{3} - 4x = 0\]
\[x\left( x^{2} - 4 \right) = 0\]
\[x = 0;\ \ x = \pm 2.\]
\[- 2;0 \in \lbrack - 2;2).\]
\[f( - 2) = \frac{16}{4} - 8 = 4 - 8 = - 4;\]
\[f(0) = 0.\]
\[\max{f(x)} = 0;\]
\[\min{f(x)} = - 4.\]