\[\boxed{\mathbf{7}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = x^{2};\ \ x \in R\]
\[\mathrm{\Delta}f = (x + \mathrm{\Delta}x)^{2} - x^{2} =\]
\[= (2x + \mathrm{\Delta}x) \cdot \mathrm{\Delta}x.\]
\[\frac{\mathrm{\Delta}f}{\mathrm{\Delta}x} = \frac{(2x + \mathrm{\Delta}x) \cdot \mathrm{\Delta}x}{\mathrm{\Delta}x} = 2x + \mathrm{\Delta}x.\]
\[При\ x \rightarrow 0:\]
\[f^{'}(x) = 2x.\]
\[\textbf{б)}\ f^{'}(x) = 2x;\]
\[x = \ 0 \rightarrow f^{'}(1) = 0;\]
\[x = 1 \rightarrow f^{'}(2) = 2;\]
\[x = - 1 \rightarrow f^{'}( - 1) = - 2;\]
\[x = 2 \rightarrow f^{'}(2) = 4;\]
\[x = - 2 \rightarrow f^{'}( - 2) = - 4;\]
\[x = 3 \rightarrow f^{'}(3) = 9;\]
\[x = - 3 \rightarrow f^{'}( - 3) = - 9.\]
\[\textbf{в)}\ f^{'}(x) = 2x;\]
\[2x = 0\]
\[x = 0.\]
\[2x = 1\]
\[x = \frac{1}{2} = 0,5.\]
\[2x = 3\]
\[x = \frac{3}{2} = 1,5.\]