\[\boxed{\mathbf{5}\mathbf{.}}\]
\[f(x) = x^{2};\ \ x_{1} = x;\ \ x_{2} = x + \mathrm{\Delta}x\]
\[\textbf{а)}\ f(x) = x^{2};\]
\[f(x + \mathrm{\Delta}x) = (x + \mathrm{\Delta}x)^{2};\]
\[\mathrm{\Delta}f = f(x + \mathrm{\Delta}x) - f(x) =\]
\[= (x + \mathrm{\Delta}x)^{2} - x^{2} = x^{2} +\]
\[+ 2x \cdot \mathrm{\Delta}x + (\mathrm{\Delta}x)^{2} - x^{2} =\]
\[= 2x \cdot \mathrm{\Delta}x + (\mathrm{\Delta}x)^{2} =\]
\[= (2x + \mathrm{\Delta}x) \cdot \mathrm{\Delta}x.\]
\[\textbf{б)}\ tg\ \beta = \frac{\mathrm{\Delta}f(x)}{\mathrm{\Delta}x} =\]
\[= \frac{(2x + \mathrm{\Delta}x) \cdot \mathrm{\Delta}x}{\mathrm{\Delta}x} = 2x + \mathrm{\Delta}x.\]
\[\textbf{в)}\ f^{'}(x) = \lim_{x \rightarrow 0}\frac{\mathrm{\Delta}f}{\mathrm{\Delta}x};\ \]
\[tg\ a = f^{'}(x) =\]
\[= \lim_{x \rightarrow 0}\frac{(2x + \mathrm{\Delta}x) \cdot \mathrm{\Delta}x}{\mathrm{\Delta}x} =\]
\[= \lim_{x \rightarrow 0}(2x + \mathrm{\Delta}x) = 2x.\]
\[\textbf{г)}\ tg\ a = 2x;\]
\[x = 0:\]
\[tg\ a = 2x = 2 \cdot 0 = 0.\]
\[x = 1:\]
\[tg\ a = 2x = 2 \cdot 1 = 2.\]
\[x = - 1:\]
\[tg\ a = 2x = 2 \cdot ( - 1) = - 2.\]
\[x = 2:\]
\[tg\ a = 2x = 2 \cdot 2 = 4.\]
\[x = - 2:\]
\[tg\ a = 2x = 2 \cdot ( - 2) = - 4.\]