\[\boxed{\mathbf{20}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = 4x^{3} - 3x^{2} - 2x;\ \]
\[\ x_{0} = 0;\]
\[f^{'}(x) = 4 \cdot \left( x^{3} \right)^{'} - 3 \cdot \left( x^{2} \right)^{'} -\]
\[- 2 \cdot (x)^{'} = 4 \cdot 3x^{2} -\]
\[- 3 \cdot 2x - 2 \cdot 1 =\]
\[= 12x^{2} - 6x - 2;\]
\[f^{'}(0) = 12 \cdot 0 - 6 \cdot 0 - 2 = - 2.\]
\[\textbf{б)}\ f(x) = - 5x^{3} + 7x^{2} + x;\ \ \]
\[x_{0} = 1\]
\[f^{'}(x) = - 5 \cdot \left( x^{3} \right)^{'} + 7 \cdot \left( x^{2} \right)^{'} +\]
\[+ x^{'} = - 5 \cdot 3x^{2} + 7 \cdot 2x + 1 =\]
\[= - 15x^{2} + 14x + 1;\]
\[f^{'}(1) = - 15 \cdot 1 + 14 \cdot 1 + 1 = 0.\]
\[\textbf{в)}\ f(x) = - x^{3} + 4x + 5;\ \]
\[\ x_{0} = - 1;\]
\[f^{'}(x) = - 1 \cdot \left( x^{3} \right)^{'} + 4 \cdot x^{'} + 5^{'} =\]
\[= - 1 \cdot 3x^{2} + 4 \cdot 1 + 0 =\]
\[= - 3x^{2} + 4;\]
\[f^{'}( - 1) = - 3 \cdot 1 + 4 = 1.\]
\[\textbf{г)}\ f(x) = 4x^{3} + x^{2} - 3x + 3;\ \]
\[\ x_{0} = - 2;\]
\[f^{'}(x) = 4 \cdot \left( x^{3} \right)^{'} + \left( x^{2} \right)^{'} - 3x^{'} +\]
\[+ 3^{'} = 4 \cdot 3x^{2} + 2x - 3 \cdot 1 + 0 =\]
\[= 12x^{2} + 2x - 3;\]
\[f^{'}( - 2) = 12 \cdot 4 + 2 \cdot ( - 2) - 3 =\]
\[= 48 - 7 = 41.\]