\[\boxed{\mathbf{19}\mathbf{.}}\]
\[\textbf{а)}\ y = (x + 3)^{2} = x^{2} + 6x + 9;\ \]
\[\ x \in R\]
\[y^{'} = \left( x^{2} \right)^{'} + 6 \cdot x^{'} + 9^{'} = 2x +\]
\[+ 6 \cdot 1 + 0 = 2x + 6.\]
\[\textbf{б)}\ y = (x - 4)^{2} = x^{2} - 8x + 16;\ \ \ \]
\[x \in R\]
\[y^{'} = \left( x^{2} \right)^{'} - 8 \cdot x^{'} + 16^{'} = 2x -\]
\[- 8 \cdot 1 + 0 = 2x - 8.\]
\[\textbf{в)}\ y = (3x + 1)^{2} = 9x^{2} + 6x + 1;\ \ \]
\[x \in R\]
\[y^{'} = 9 \cdot \left( x^{2} \right)^{'} + 6 \cdot x^{'} + 1^{'} =\]
\[= 9 \cdot 2x + 6 \cdot 1 + 0 = 18x + 6.\]
\[\textbf{г)}\ y = (x + 1)^{3} = x^{3} + 3x^{2} +\]
\[+ 3x + 1;\ \ x \in R\]
\[y^{'} = \left( x^{3} \right)^{'} + 3 \cdot \left( x^{2} \right)^{'} + 3x^{'} +\]
\[+ 1^{'} = 3x^{2} + 3 \cdot 2x + 3 \cdot 1 +\]
\[+ 0 = 3x^{2} + 6x + 3.\]
\[\textbf{д)}\ y = (x - 2)^{3} = x^{3} - 6x^{2} +\]
\[+ 12x - 8;\ x \in R\]
\[y^{'} = \left( x^{3} \right)^{'} - 6 \cdot \left( x^{2} \right)^{'} + 12x^{'} -\]
\[- 8^{'} = 3x^{2} - 6 \cdot 2x +\]
\[+ 12 \cdot 1 - 0 =\]
\[= 3x^{2} - 12x + 12.\]
\[\textbf{е)}\ y = (2x + 3)^{3} = 8x^{3} +\]
\[+ 36x^{2} + 54x + 27;\ \ x \in R\]
\[y^{'} = 8 \cdot \left( x^{3} \right)^{'} + 36 \cdot \left( x^{2} \right)^{'} +\]
\[+ 54x^{'} + 27^{'} =\]
\[= 8 \cdot 3x^{2} + 36 \cdot 2x + 54 \cdot 1 +\]
\[+ 0 = 24x^{2} + 72x + 54.\ \]