\[\boxed{\mathbf{24.}}\]
\[\mathrm{\Delta}f = f\left( x_{0} + \mathrm{\Delta}x \right) - f\left( x_{0} \right)\]
\[\mathbf{а)\ }f(x) = x^{2};x_{0} = 0;\ \ \mathrm{\Delta}x = 0,1:\]
\[\mathrm{\Delta}f = f(0 + 0,1) - f(0) =\]
\[= f(0,1) - f(0) =\]
\[= 0,01 - 0 = 0,01.\]
\[\mathbf{б)\ }f(x) = x^{2};x_{0} = 1;\ \ \mathrm{\Delta}x = 0,1:\]
\[\mathrm{\Delta}f = f(1 + 0,1) - f(1) =\]
\[= f(1,1) - f(1) =\]
\[= 1,21 - 1 = 0,21.\mathbf{\ }\]
\[\mathbf{в)\ }f(x) = x^{2};x_{0} = 1;\ \ \mathrm{\Delta}x = - 0,1:\]
\[\mathrm{\Delta}f = f(1 - 0,1) - f(1) =\]
\[= f(0,9) - f(1) =\]
\[= 0,81 - 1 = - 0,19.\mathbf{\ }\]
\[\mathbf{г)\ }f(x) = x^{2};x_{0} = 2;\ \ \mathrm{\Delta}x = 0,1:\]
\[\mathrm{\Delta}f = f(2 + 0,1) - f(2) =\]
\[= f(2,1) - f(2) =\]
\[= 4,41 - 4 = 0,41.\]