\[\boxed{\mathbf{8.}}\]
\[\left\{ \begin{matrix} x^{2} - 5x - 14 = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{0,6}{(x^{2} - 14x + 50)} = 0 \\ \end{matrix} \right.\ \]
\[x^{2} - 5x - 14 = 0\]
\[x_{1} + x_{2} = 5;\ \ \ x_{1} \cdot x_{2} = - 14\]
\[x_{1} = 7;\ \ \ x_{2} = - 2.\]
\[Проверим:\]
\[\log_{0,6}\left( 7^{2} - 14 \cdot 7 + 50 \right) =\]
\[= \log_{0,6}(49 - 98 + 50) =\]
\[= \log_{0,6}1 = 0.\]
\[\log_{0,6}\left( ( - 2)^{2} - 14 \cdot ( - 2) + 50 \right) =\]
\[= \log_{0,6}(4 + 28 + 50) \neq 0.\]
\[Ответ:x = 7.\]
\[\left\{ \begin{matrix} x^{2} - 8x + 15 = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \log_{0,7}\left( x^{2} - 10x + 26 \right) = 0 \\ \end{matrix} \right.\ \ \]
\[x^{2} - 8x + 15 = 0\]
\[D_{1} = 16 - 15 = 1\]
\[x_{1} = 4 + 1 = 5;\]
\[x_{2} = 4 - 1 = 3.\]
\[Проверим:\]
\[\log_{0,7}\left( 5^{2} - 10 \cdot 5 + 26 \right) =\]
\[= \log_{0,7}(25 - 50 + 26) =\]
\[= \log_{0,7}1 = 0.\]
\[\log_{0,7}\left( 3^{2} - 10 \cdot 3 + 26 \right) =\]
\[= \log_{0,7}(9 - 30 + 26) =\]
\[= \log_{0,7}5 \neq 0.\]
\[Ответ:x = 5.\]