\[\boxed{\mathbf{38.}}\]
\[\left\{ \begin{matrix} \sin{2x} = 1\ \ \ \ \\ \cos{4x} = - 1 \\ \cos{8x} = 1\ \ \ \\ \end{matrix} \right.\ \]
\[\sin{2x} = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Проверим:\]
\[Решение\ неравенства:\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Ответ:x = \frac{\pi}{4} + \pi k.\]
\[\left\{ \begin{matrix} \left| \sin\frac{x}{2} \right|\ = 1\ \ \\ \left| \cos{2x} \right| = 1 \\ \left| \cos{4x} \right| = 1 \\ \end{matrix} \right.\ \]
\[1)\ \left\{ \begin{matrix} \sin\frac{x}{2} = 1\ \ \ \ \ \\ \left| \cos{2x} \right| = 1 \\ \left| \cos{4x} \right| = 1 \\ \end{matrix} \right.\ \]
\[\sin\frac{x}{2} = 1\]
\[x = \pi + 4\pi k.\]
\[Проверим:\]
\[Решение\ системы:\]
\[x = \pi + 4\pi k.\]
\[2)\ \left\{ \begin{matrix} \sin\frac{x}{2} = - 1\ \ \\ \left| \cos{2x} \right| = 1 \\ \left| \cos{4x} \right| = 1 \\ \end{matrix} \right.\ \]
\[\sin\frac{x}{2} = - 1\]
\[x = - \pi + 4\pi k.\]
\[Проверим:\]
\[Решение\ системы:\]
\[x = - \pi + 4\pi k.\]
\[Решение\ неравенства:\]
\[x = \pi + 2\pi k.\]
\[Ответ:x = \pi + 2\pi k.\]