\[\boxed{\mathbf{37.}}\]
\[\textbf{а)}\ 3\sin^{8}{2x} - 8\cos^{7}{4x} \geq 11\]
\[\left\{ \begin{matrix} \left| \sin{2x} \right| = 1\ \\ \cos{4x} = - 1 \\ \end{matrix} \right.\ \]
\[\left| \sin{2x} \right| = 1\]
\[x = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]
\[Проверим:\]
\[\cos{4x} = \cos{4\left( \frac{\pi}{4} + \frac{\text{πk}}{2} \right)} =\]
\[= \cos\pi = - 1.\]
\[Решение\ неравенства:\]
\[x = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]
\[Ответ:x = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]
\[\textbf{б)}\ 11\sin^{7}{3x} - 2\cos^{4}{2x} \leq - 13\]
\[\left\{ \begin{matrix} \sin{3x} = - 1 \\ \left| \cos x \right| = 1\ \ \\ \end{matrix} \right.\ \]
\[1)\cos x = 1\]
\[x = \pi k.\]
\[Проверим:\]
\[\sin{3x} = \sin{3\pi k} \neq - 1.\]
\[нет\ решений.\]
\[2)\cos x = - 1\]
\[x = \frac{\pi}{2} + \pi k.\]
\[Проверим:\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[Решение\ неравенства:\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[Ответ:\ x = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{в)}\ 5\sin^{7}{2x} - 9\cos^{4}{4x} \leq - 14\]
\[\left\{ \begin{matrix} \sin{2x} = 1\ \ \ \\ \left| \cos{4x} \right| = 1 \\ \end{matrix} \right.\ \]
\[1)\sin{2x} = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Проверим:\]
\[\cos{4x} = \cos{4\left( \frac{\pi}{4} + \frac{\text{πk}}{2} \right)} =\]
\[= \cos\pi = - 1.\]
\[Решение:\]
\[x = \frac{\pi}{4} + \pi k.\]
\[2)\sin{2x} = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Проверим:\ \]
\[\cos{4x} = \cos{4\left( \frac{\pi}{4} + \frac{\text{πk}}{2} \right)} =\]
\[= \cos\pi \neq 1.\]
\[Решений\ нет.\]
\[Ответ:x = \frac{\pi}{4} + \pi k.\]
\[\textbf{г)}\ 13\sin^{4}{3x} + 2\cos^{8}{2x} \geq 15\]
\[\left\{ \begin{matrix} \left| \cos{2x} \right| = 1 \\ \left| \sin{3x} \right| = 1 \\ \end{matrix} \right.\ \]
\[1)\ \left\{ \begin{matrix} \cos{2x} = 1 \\ \sin{3x} = 1 \\ \end{matrix} \right.\ \]
\[\cos{2x} = 1\]
\[x = \pi k.\]
\[\sin{3x} = \sin{3\pi k} \neq 1.\]
\[Решений\ нет.\]
\[2)\ \left\{ \begin{matrix} \cos{2x} = 1\ \ \\ \sin{3x} = - 1 \\ \end{matrix} \right.\ \]
\[\cos{2x} = 1\]
\[x = \pi k.\]
\[\sin{3x} = \sin{3\pi k} = 1.\]
\[Решение\ системы:\]
\[x = \pi k.\]
\[3)\ \left\{ \begin{matrix} \cos{2x} = - 1 \\ \sin{3x} = 1\ \ \ \\ \end{matrix} \right.\ \]
\[\cos{2x} = - 1\]
\[x = \frac{\pi}{2} + \pi k.\]
\[Решение\ системы:\]
\[x = \frac{\pi}{2} + \pi k.\]
\[4)\ \left\{ \begin{matrix} \cos{2x} = - 1 \\ \sin{3x} = - 1 \\ \end{matrix} \right.\ \]
\[\cos{2x} = - 1\]
\[x = \frac{\pi}{2} + \pi k.\]
\[Решение\ системы:\]
\[x = \frac{\pi}{2} + \pi k.\]
\[Решение\ неравенства:\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[Ответ:x = \frac{\pi}{2} + 2\pi n.\]