\[\boxed{\mathbf{35.}}\]
\[\textbf{а)}\sin x\cos{8x} = 1\]
\[1)\ \left\{ \begin{matrix} \sin x = 1\ \ \\ \cos{8x} = 1 \\ \end{matrix} \right.\ \]
\[x_{k} = \frac{\pi}{2} + 2\pi k.\]
\[2)\ \left\{ \begin{matrix} \sin x = - 1\ \ \ \\ \cos{8x} = - 1 \\ \end{matrix} \right.\ \]
\[x_{m} = - \frac{\pi}{2} + 2\pi m.\]
\[Решение\ уравнения:\]
\[x = \frac{\pi}{2} + 2\pi k.\]
\[Ответ:x = \frac{\pi}{2} + 2\pi k.\]
\[\textbf{б)}\sin{6x}\cos{4x} = - 1\]
\[1)\ \left\{ \begin{matrix} \sin{6x} = 1\ \ \ \ \\ \cos{4x} = - 1 \\ \end{matrix} \right.\ \]
\[\cos{4x} = - 1\]
\[x_{k} = - \frac{\pi}{4} + \frac{\text{πk}}{2}.\]
\[Проверим:\]
\[x = - \frac{\pi}{4} + \pi m.\]
\[2)\ \left\{ \begin{matrix} \sin{6x} = - 1\ \ \ \\ \cos{4x} = 1\ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\cos{4x} = 1\]
\[x = \frac{\text{πn}}{2}.\]
\[Проверим:\]
\[\sin{6 \cdot}\frac{\text{πn}}{2} = \sin{3\pi n} = 0.\]
\[нет\ решений.\]
\[Решение\ уравнения:\]
\[x = - \frac{\pi}{4} + \pi m.\]
\[Ответ:x = - \frac{\pi}{4} + \pi m.\]
\[\textbf{в)}\sin{3x}\cos{12x} = 1\]
\[1)\ \left\{ \begin{matrix} \sin{3x} = 1\ \ \ \\ \cos{12x} = 1 \\ \end{matrix} \right.\ \]
\[\sin{3x} = 1\]
\[x = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[Проверим:\]
\[\cos{12x} = \cos{12\left( \frac{\pi}{6} + \frac{\text{πn}}{3} \right)} =\]
\[= \cos(2\pi + 4\pi n) = \cos{2\pi} = 1.\]
\[Решение\ первой\ системы:\]
\[x = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[2)\ \left\{ \begin{matrix} \sin{3x} = - 1\ \ \ \\ \cos{12x} = - 1 \\ \end{matrix} \right.\ \]
\[\sin{3x} = - 1\]
\[x = - \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[Провеим:\]
\[\cos{( - 2\pi}) = - 1;\]
\[нет\ решений.\]
\[Решение\ равнения:\]
\[x = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[Ответ:x = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[\textbf{г)}\sin{4x}\cos{16x} = - 1\]
\[1)\ \left\{ \begin{matrix} \sin{4x} = - 1 \\ \cos{16x} = 1 \\ \end{matrix} \right.\ \]
\[\sin{4x} = - 1\]
\[x = - \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[Проверим:\]
\[\cos{16x} = \cos{16\left( - \frac{\pi}{8} + \frac{\text{πn}}{2} \right)} =\]
\[= \cos( - 2\pi + 8\pi n) =\]
\[= \cos( - 2\pi) = 1.\]
\[Решение\ первой\ системы:\]
\[x = - \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[2)\ \left\{ \begin{matrix} \sin{4x} = 1\ \ \ \ \ \ \\ \cos{16x} = - 1 \\ \end{matrix} \right.\ \]
\[\sin{4x} = 1\]
\[x = \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[Провеим:\]
\[\cos{16x} = - 1;\]
\[нет\ решений.\]
\[Решение\ равнения:\]
\[x = - \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[Ответ:x = - \frac{\pi}{8} + \frac{\text{πn}}{2}.\]