Решебник по алгебре 11 класс Никольский Параграф 13. Использование свойств функции при решении уравнений и неравенств Задание 17

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 17

\[\boxed{\mathbf{17.}}\]

\[\textbf{а)}\ 2cos^{2}\left( x\sin x \right) =\]

\[= 2 + \left| \log_{2}\left( x^{2} - 4x + 1 \right) \right|\]

\[- 1 \leq \cos\left( x\sin x \right) \leq 1\]

\[0 \leq cos^{2}\left( x\sin x \right) \leq 1\]

\[0 \leq 2cos^{2}\left( x\sin x \right) \leq 2.\]

\[\left| \log_{2}\left( x^{2} - 4x + 1 \right) \right| \geq 0\]

\[2 + \left| \log_{2}\left( x^{2} - 4x + 1 \right) \right| \geq 2.\]

\[\left\{ \begin{matrix} 2cos^{2}\left( x\sin x \right) = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2 + \left| \log_{2}\left( x^{2} - 4x + 1 \right) \right| = 2 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \text{co}s^{2}\left( x\sin x \right) = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left| \log_{2}\left( x^{2} - 4x + 1 \right) \right| = 0 \\ \end{matrix} \right.\ \]

\[x^{2} - 4x + 1 = 1\]

\[x^{2} - 4x = 0\]

\[x(x - 4) = 0\]

\[x = 0;\ \ \ x = 4.\]

\[Проверим:\]

\[\text{co}s^{2}\left( 0\sin 0 \right) = 1^{2} = 1 - верно.\]

\[\text{co}s^{2}\left( 4\sin 4 \right) \neq 1 - неверно.\]

\[Ответ:x = 0.\]

\[\textbf{б)}\ 3sin^{2}\left( \frac{\text{πx}}{2} \cdot \sin\frac{\text{πx}}{2} \right) =\]

\[= 3 + \log_{3}\left( x^{2} - 6x + 10 \right)\]

\[0 \leq \ 3sin^{2}\left( \frac{\text{πx}}{2} \cdot \sin\frac{\text{πx}}{2} \right) \leq 3.\]

\[\log_{3}\left( x^{2} - 6x + 10 \right) \geq 0\]

\[{3 + \log_{3}}\left( x^{2} - 6x + 10 \right) \geq 3.\]

\[\left\{ \begin{matrix} 3sin^{2}\left( \frac{\text{πx}}{2} \cdot \sin\frac{\text{πx}}{2} \right) = 3\ \ \ \ \ \ \ \ \\ 3 + \log_{3}\left( x^{2} - 6x + 10 \right) = 3 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \text{si}n^{2}\left( \frac{\text{πx}}{2} \cdot \sin\frac{\text{πx}}{2} \right) = 1\ \ \ \\ \log_{3}\left( x^{2} - 6x + 10 \right) = 0 \\ \end{matrix} \right.\ \]

\[\log_{3}\left( x^{2} - 6x + 10 \right) = 0\]

\[x^{2} - 6x + 10 = 1\]

\[x^{2} - 6x + 9 = 0\]

\[(x - 3)^{2} = 0\]

\[x = 3.\]

\[Проверим:\ \]

\[\text{si}n^{2}\left( \frac{3\pi}{2} \cdot \sin\frac{3\pi}{2} \right) =\]

\[= \text{si}n^{2}\left( \frac{3\pi}{2} \cdot ( - 1) \right) =\]

\[= \text{si}n^{2}\left( - \frac{3\pi}{2} \right) = ( - 1)^{2} = 1.\]

\[Ответ:x = 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!