Решебник по алгебре 11 класс Никольский Параграф 13. Использование свойств функции при решении уравнений и неравенств Задание 16

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 16

\[\boxed{\mathbf{16.}}\]

\[\textbf{а)}\ \left| \lg(x - 3) \right| + 2 = \left| \cos\text{πx} + 1 \right|\]

\[\left| \lg(x - 3) \right| = \left| \cos\text{πx} + 1 \right| - 2\]

\[\left| \lg(x - 3) \right| \geq 0;\]

\[- 1 \leq \cos\text{πx} \leq 1\]

\[0 \leq \cos\text{πx} + 1 \leq 2\]

\[0 \leq \left| \cos\text{πx} + 1 \right| \leq 2\]

\[- 2 \leq \left| \cos\text{πx} + 1 \right| - 2 \leq 0.\]

\[\left\{ \begin{matrix} \lg{(x - 3)} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left| \cos\text{πx} + 1 \right| - 2 = 0 \\ \end{matrix} \right.\ \]

\[\lg(x - 3) = 0\]

\[x - 3 = 1\]

\[x = 4.\]

\[Проверим:\]

\[\left| \cos{4\pi} + 1 \right| - 2 = |1 + 1| - 2 =\]

\[= 2 - 2 = 0.\]

\[Ответ:x = 4.\]

\[\textbf{б)}\ \left| \lg(x - 2) \right| + 1 = - \cos\text{πx}\]

\[\left| \lg(x - 2) \right| = - \cos\text{πx} - 1\]

\[\left| \lg(x - 2) \right| \geq 0;\]

\[- 1 \leq \cos\text{πx} \leq 1\]

\[- 1 \leq - \cos\text{πx} \leq 1\]

\[- 2 \leq - \cos\text{πx} - 1 \leq 0.\]

\[\left\{ \begin{matrix} \lg{(x - 2)} = 0\ \ \ \ \ \ \\ - \cos\text{πx} - 1 = 0 \\ \end{matrix} \right.\ \]

\[\lg(x - 2) = 0\]

\[x - 2 = 1\]

\[x = 3.\]

\[Проверим:\]

\[- \cos{3\pi} - 1 = - ( - 1) - 1 =\]

\[= 1 - 1 = 0.\]

\[Ответ:x = 3.\]

\[\textbf{в)}\ \left| \lg(x - 5) \right| + 2 =\]

\[= \sqrt{4 - (x - 6)^{2}}\]

\[\left| \lg(x - 5) \right| = \sqrt{4 - (x - 6)^{2}} - 2\]

\[\left| \lg(x - 5) \right| \geq 0;\]

\[0 \leq \sqrt{4 - (x - 6)^{2}} \leq \sqrt{4}\]

\[- 2 \leq \sqrt{4 - (x - 6)^{2}} - 2 \leq 0.\]

\[\left\{ \begin{matrix} \lg{(x - 5)} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \sqrt{4 - (x - 6)^{2}} - 2 = 0 \\ \end{matrix} \right.\ \]

\[\lg(x - 5) = 1\]

\[x - 5 = 1\]

\[x = 6.\]

\[Проверим:\]

\[\sqrt{4 - (6 - 6)^{2}} - 2 = \sqrt{4} - 2 = 0.\]

\[Ответ:x = 6.\ \]

\[\textbf{г)}\ \left| \lg(x - 4) \right| + 3 =\]

\[= \sqrt{9 - (x - 5)^{2}}\]

\[\left| \lg(x - 4) \right| = \sqrt{9 - (x - 5)^{2}} - 3\]

\[\left| \lg(x - 4) \right| \geq 0;\]

\[0 \leq \sqrt{9 - (x - 5)^{2}} \leq \sqrt{9}\]

\[- 3 \leq \sqrt{9 - (x - 5)^{2}} - 3 \leq 0.\]

\[\left\{ \begin{matrix} \left| \lg(x - 4) \right| = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \sqrt{9 - (x - 5)^{2}} - 3 = 0 \\ \end{matrix} \right.\ \]

\[\lg(x - 4) = 0\]

\[x - 4 = 1\]

\[x = 5.\]

\[Проверим:\]

\[\sqrt{9 - (5 - 5)^{2}} - 3 = \sqrt{9} - 3 =\]

\[= 3 - 3 = 0.\]

\[Ответ:x = 5.\]

Скачать ответ
Есть ошибка? Сообщи нам!