Решебник по алгебре 11 класс Никольский Параграф 13. Использование свойств функции при решении уравнений и неравенств Задание 1

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 1

\[\boxed{\mathbf{1.}}\]

\[\left\{ \begin{matrix} - x^{2} + 9x - 14 \geq 0 \\ x^{2} - 5x - 14 \geq 0\ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 9x + 14 \leq 0\]

\[x_{1} + x_{2} = 9;\ \ x_{1} \cdot x_{2} = 14\]

\[x_{1} = 2;\ \ x_{2} = 7;\]

\[(x - 2)(x - 7) \leq 0\]

\[2 \leq x \leq 7.\]

\[x^{2} - 5x - 14 \geq 0\]

\[x_{1} + x_{2} = 5;\ \ \ x_{1} \cdot x_{2} = - 14\]

\[x_{1} = - 2;\ \ \ x_{2} = 7;\]

\[(x + 2)(x - 7) \geq 0\]

\[x \leq - 2;\ \ \ x \geq 7.\]

\[Решение\ системы:\ \ x = 7.\]

\[Проверка:\]

\[5 \cdot 0 - 2 \cdot 0 - 1 = \sin\frac{7\pi}{2}\]

\[- 1 = - 1.\]

\[Ответ:x = 7.\]

\[\left\{ \begin{matrix} - x^{2} + 11x - 30 \geq 0 \\ x^{2} - 7x + 6 \geq 0\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 11x + 30 \leq 0\]

\[x_{1} + x_{2} = 11;\ \ x_{1} \cdot x_{2} = 30\]

\[x_{1} = 5;\ \ \ x_{2} = 6;\]

\[(x - 5)(x - 6) \leq 0\]

\[5 \leq x \leq 6.\]

\[x^{2} - 7x + 6 \geq 0\]

\[x_{1} + x_{2} = 7;\ \ \ x_{1} \cdot x_{2} = 6\]

\[x_{1} = 1;\ \ \ x_{2} = 6;\]

\[(x - 1)(x - 6) \geq 0\]

\[x \leq 1;\ \ \ x \geq 6.\]

\[Решение\ системы:\]

\[x = 6.\]

\[Проверка:\]

\[3 \cdot 0 - 4 \cdot 0 = \sin{6\pi}\]

\[0 = 0.\]

\[Ответ:x = 6.\]

\[\left\{ \begin{matrix} x^{2} - 9 \geq 0 \\ 9 - x^{2} \geq 0 \\ \end{matrix} \right.\ \]

\[x^{2} - 9 \geq 0\]

\[(x + 3)(x - 3) \geq 0\]

\[x \leq - 3;\ \ \ x \geq 3.\]

\[9 - x^{2} \geq 0\]

\[x^{2} - 9 \leq 0\]

\[(x + 3)(x - 3) \leq 0\]

\[- 3 \leq x \leq 3.\]

\[Решение\ системы:\]

\[x = - 3;\ \ x = 3.\]

\[Проверка:\]

\[2001 \cdot 0 - 2002 \cdot 0 = \cos\frac{\pm 3\pi}{2}\]

\[0 = 0.\]

\[Ответ:x = \pm 3.\]

\[\left\{ \begin{matrix} x^{2} - 4 \geq 0 \\ 4 - x^{2} \geq 0 \\ \end{matrix} \right.\ \]

\[x^{2} - 4 \geq 0\]

\[(x + 2)(x - 2) \geq 0\]

\[x \leq - 2;\ \ \ x \geq 2.\]

\[4 - x^{2} \geq 0\]

\[x^{2} - 4 \leq 0\]

\[(x + 2)(x - 2) \leq 0\]

\[- 2 \leq x \leq 2.\]

\[Решение\ системы:\]

\[x = \pm 2.\]

\[Проверка:\]

\[2003 \cdot 0 - 2004 \cdot 0 = tg\ ( \pm \pi)\]

\[0 = 0.\]

\[Ответ:x = \pm 2.\]

Скачать ответ
Есть ошибка? Сообщи нам!