\[\boxed{\mathbf{46.}}\]
\[\textbf{а)}\ (4 - x)^{x^{2} - 9} - sin^{2}10{^\circ} <\]
\[< (4 - x)^{\frac{1}{\log_{\cos{10{^\circ}}}\sqrt{4 - x}}}\]
\[4 - x > 0\]
\[x < 4.\]
\[4 - x \neq 1\]
\[x \neq 3.\]
\[M = ( - \infty;3) \cup (3;4).\]
\[(4 - x)^{x^{2} - 9} - sin^{2}10{^\circ} < cos^{2}10{^\circ}\ \]
\[(4 - x)^{x^{2} - 9} < 1\]
\[10^{\left( x^{2} - 9 \right)\lg(4 - x)} < 10{^\circ}\ \]
\[\left( x^{2} - 9 \right)\lg(4 - x) < 0\]
\[x < 3:\]
\[x^{2} - 9 < 0\]
\[- 3 < x < 3.\]
\[3 < x < 4:\]
\[x^{2} - 9 > 0\]
\[x < - 3;\ \ x > 3.\]
\[Решение\ неравенства:\]
\[x \in ( - 3;3) \cup (3;4).\]
\[Ответ:x \in ( - 3;3) \cup (3;4).\]
\[\textbf{б)}\ (5 - x)^{x^{2} - 4} - cos^{2}2002{^\circ} <\]
\[< (5 - x)^{\frac{1}{\log_{\sin{2002{^\circ}}}\sqrt{5 - x}}}\]
\[5 - x > 0\]
\[x < 5.\]
\[5 - x \neq 1\]
\[x \neq 4.\]
\[M = ( - \infty;4) \cup (4;5).\]
\[(5 - x)^{x^{2} - 4} - cos^{2}2002{^\circ} <\]
\[< \text{si}n^{2}2002{^\circ}\]
\[(5 - x)^{x^{2} - 4} < 1\]
\[x < 4:\]
\[x^{2} - 4 < 0\]
\[- 2 < x < 2.\]
\[4 < x < 5:\]
\[x^{2} - 4 > 0\]
\[x < - 2;\ \ x > 2.\]
\[Решение\ неравенства:\]
\[x \in ( - 2;2) \cup (4;5).\]
\[Ответ:x \in ( - 2;2) \cup (4;5).\]