Решебник по алгебре 11 класс Никольский Параграф 11. Равносильность неравенств на множествах Задание 44

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 44

\[\boxed{\mathbf{44.}}\]

\[\textbf{а)}\log_{x}\frac{7x - 2}{2 - x} < 0\]

\[x > 0;\ \ x \neq 1\]

\[\frac{7x - 2}{2 - x} > 0\]

\[\frac{7\left( x - \frac{2}{7} \right)}{(x - 2)} < 0\]

\[\frac{2}{7} < x < 2.\]

\[M = \left( \frac{2}{7};1 \right) \cup (1;2).\]

\[\frac{\lg{(7x - 2) - \lg(2 - x)}}{\lg x} < 0\]

\[\frac{2}{7} < x < 1:\]

\[\lg{(7x - 2) - \lg(2 - x)} > 0\]

\[(7x - 2) - (2 - x) > 0\]

\[7x - 2 - 2 + x > 0\]

\[8x > 4\]

\[x > \frac{1}{2}.\]

\[1 < x < 2:\]

\[\lg{(7x - 2) - \lg(2 - x)} < 0\]

\[(7x - 2) - (2 - x) < 0\]

\[7x - 2 - 2 + x < 0\]

\[8x < 4\]

\[x < \frac{1}{2}.\]

\[Решение\ неравенства:\]

\[x \in \left( \frac{1}{2}\ ;1 \right).\]

\[Ответ:x \in \left( \frac{1}{2}\ ;1 \right).\]

\[\textbf{б)}\log_{x}\frac{3x - 1}{14x - 5} > 0\]

\[\frac{3x - 1}{14x - 5} > 0\]

\[\frac{3\left( x - \frac{1}{3} \right)}{14\left( x - \frac{5}{14} \right)} > 0\]

\[x < \frac{1}{3};\ \ x > \frac{5}{14}.\]

\[x > 0;\ \ x \neq 1.\]

\[M = \left( 0;\frac{1}{3} \right) \cup \left( \frac{5}{14};1 \right) \cup (1; + \infty).\]

\[\frac{\lg(3x - 1) - \lg(14x - 5)}{\lg x} > 0\]

\[0 < x < \frac{1}{3}:\]

\[\lg(3x - 1) - \lg(14x - 5) > 0\]

\[(3x - 1) - (14x - 5) > 0\]

\[3x - 1 - 14x + 5 > 0\]

\[11x < 4\]

\[x < \frac{4}{11}.\]

\[\frac{5}{14} < x < 1:\]

\[\lg(3x - 1) - \lg(14x - 5) < 0\]

\[(3x - 1) - (14x - 5) < 0\]

\[3x - 1 - 14x + 5 < 0\]

\[11x > 4\]

\[x > \frac{4}{11}.\]

\[Решение\ неравенства:\]

\[x \in \left( 0\ ;\frac{1}{3} \right) \cup \left( \frac{5}{14};1 \right) \cup (1; + \infty).\]

\[\textbf{в)}\log_{x}\frac{6x - 1}{13x - 7} < 0\]

\[x > 0;\ \ x \neq 1;\]

\[\frac{6x - 1}{13x - 7} > 0\]

\[\frac{6\left( x - \frac{1}{6} \right)}{13\left( x - \frac{7}{13} \right)} > 0\]

\[x < \frac{1}{6};\ \ \ x > \frac{7}{13}.\]

\[M = \left( 0;\frac{1}{6} \right) \cup \left( \frac{7}{13};1 \right) \cup (1; + \infty).\]

\[\frac{\lg(6x - 1) - \lg(13x - 7)}{\lg x} < 0\]

\[1)\ x > 1:\]

\[\lg(6x - 1) - \lg(13x - 7) < 0\]

\[6x - 1 - 13x + 7 < 0\]

\[7x > 6\]

\[x > \frac{6}{7}.\]

\[2)\ x < 1:\]

\[x < \frac{6}{7}.\]

\[Решение\ неравенства:\]

\[x \in \left( 0\ ;\frac{1}{6} \right) \cup \left( \frac{7}{13};\frac{6}{7} \right) \cup (1; + \infty).\]

\[\textbf{г)}\log_{x}\frac{16x - 11}{5x - 1} > 0\]

\[x > 0;\ \ x \neq 1\]

\[\frac{16x - 11}{5x - 1} > 0\]

\[\frac{16\left( x - \frac{11}{16} \right)}{5\left( x - \frac{1}{5} \right)} > 0\]

\[x < \frac{1}{5};\ \ \ x > \frac{11}{16}.\]

\[M = \left( 0;\frac{1}{5} \right) \cup \left( \frac{11}{16};1 \right) \cup (1; + \infty).\]

\[\frac{\lg(16x - 11) - \lg(5x - 1)}{\lg x} > 0\]

\[1)\ x > 1:\]

\[\lg(16x - 11) - \lg(5x - 1) > 0\]

\[16x - 11 - 5x + 1 > 0\]

\[11x > 10\]

\[x > \frac{10}{11}.\]

\[2)\ x < 1:\]

\[x < \frac{10}{11}.\]

\[Решение\ неравенства:\]

\[x \in \left( 0\ ;\frac{1}{5} \right) \cup \left( \frac{11}{16};\frac{10}{11} \right) \cup (1; + \infty).\]

Скачать ответ
Есть ошибка? Сообщи нам!