\[\boxed{\mathbf{43.}}\]
\[\textbf{а)}\ \frac{\sqrt{x^{2} + 1} - \left| \cos x \right|}{\sqrt{2x} + \left| \cos x \right|} >\]
\[> \frac{\sqrt{2x} - |\cos x|}{\sqrt{x^{2} + 1} + |\cos x|}\]
\[x \geq 0;\]
\[M = \lbrack 0; + \infty).\]
\[x^{2} + 1 - cos^{2}x > 2x - cos^{2}x\]
\[x^{2} - 2x + 1 > 0\]
\[(x - 1)^{2} > 0\]
\[x \neq 1.\]
\[Решение\ неравенства:\]
\[x \in \lbrack 0;1) \cup (1; + \infty).\]
\[Ответ:x \in \lbrack 0;1) \cup (1; + \infty).\]
\[\textbf{б)}\ \frac{\sqrt{x^{2} - 4} - \left| \sin x \right|}{\sqrt{3x} + \left| \sin x \right|} <\]
\[< \frac{\sqrt{3x} - \left| \sin x \right|}{\sqrt{x^{2} + 4} + \left| \sin x \right|}\]
\[x \geq 0;\]
\[x^{2} - 4 \geq 0\]
\[x^{2} \geq 4\]
\[x \leq - 2;\ \ x \geq 2.\]
\[M = \lbrack 2; + \infty).\]
\[x^{2} - 4 - sin^{2}x < 3x - sin^{2}x\]
\[x^{2} - 3x - 4 < 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = - 4\]
\[x_{1} = 4;\ \ x_{2} = - 1;\]
\[(x + 1)(x - 4) < 0\]
\[- 1 < x < 4.\]
\[Решение\ неравенства:\]
\[x \in \lbrack 2;4).\]
\[Ответ:x \in \lbrack 2;4).\]