\[\boxed{\mathbf{37.}}\]
\[\textbf{а)}\ \frac{\sqrt{13x + 25}}{|x - 2|} > \frac{\sqrt{11x + 23}}{|x - 2|}\]
\[13x + 25 \geq 0\]
\[13x \geq - 25\ \]
\[x \geq - \frac{25}{13} \geq - 1\frac{8}{13}.\]
\[11x + 23 \geq 0\]
\[11x \geq - 23\]
\[x \geq - \frac{23}{11} \geq - 2\frac{1}{11}.\]
\[x - 2 \neq 0\]
\[x \neq 2.\]
\[M = \left\lbrack - 1\frac{8}{13};2 \right) \cup (2; + \infty).\]
\[\sqrt{13x + 25} > \sqrt{11x + 23}\]
\[13x + 25 > 11x + 23\]
\[2x > - 2\]
\[x > - 1.\]
\[Решение\ неравенства:\]
\[x \in ( - 1;2) \cup (2; + \infty).\]
\[Ответ:x \in ( - 1;2) \cup (2; + \infty).\]
\[\textbf{б)}\ \frac{\sqrt{9x + 45}}{|x + 2|} > \frac{\sqrt{7x + 15}}{|x + 2|}\]
\[9x + 45 \geq 0\]
\[9x \geq 45\]
\[x \geq - 5.\]
\[7x + 15 \geq 0\]
\[7x \geq - 15\]
\[x \geq - 2\frac{1}{7}.\]
\[x + 2 \neq 0\]
\[x \neq - 2.\]
\[M = \left\lbrack - 2\frac{1}{7}; - 2 \right) \cup ( - 2; + \infty).\]
\[\sqrt{9x + 45} < \sqrt{7x + 15}\]
\[9x + 45 < 7x + 15\]
\[2x < - 30\]
\[x < - 15.\]
\[Решение\ неравенства:\]
\[нет\ корней.\]
\[Ответ:нет\ корней.\]