\[\boxed{\mathbf{36.}}\]
\[\textbf{а)}\ \left( \frac{1}{25} \right)^{\frac{(2x - 5)}{2}} > \left( \frac{1}{5} \right)^{\sqrt{6x^{2} - 31x + 25}}\]
\[6x^{2} - 31x + 25 \geq 0\]
\[D = 961 - 600 = 361 = 19^{2}\]
\[x_{1} = \frac{31 + 19}{12} = \frac{50}{12} = \frac{25}{6};\]
\[x_{2} = \frac{31 - 19}{12} = 1;\]
\[(x - 1)\left( x - \frac{25}{6} \right) \geq 0\]
\[x \leq 1;\ \ x \geq \frac{25}{6};\]
\[M = ( - \infty;1\rbrack \cup \left\lbrack \frac{25}{6}; + \infty \right).\]
\[\left( \frac{1}{5} \right)^{\frac{2(2x - 5)}{2}} > \left( \frac{1}{5} \right)^{\sqrt{6x^{2} - 31x + 25}}\]
\[\left( \frac{1}{5} \right)^{2x - 5} > \left( \frac{1}{5} \right)^{\sqrt{6x^{2} - 31x + 25}}\]
\[(5)^{- 2x + 5} > (5)^{- \sqrt{6x^{2} - 31x + 25}}\]
\[2x - 5 > \sqrt{6x^{2} - 31x + 25}\]
\[(2x - 5)^{2} > 6x^{2} - 31x + 25\]
\[4x^{2} - 20x + 25 >\]
\(> 6x^{2} - 31x + 25\)
\[Решение\ неравенства:\]
\[x \in ( - \infty;1\rbrack \cup \lbrack 5,5; + \infty).\]
\[Ответ:\ x \in ( - \infty;1\rbrack \cup \lbrack 5,5; + \infty).\]
\[\textbf{б)}\ \left( \frac{1}{36} \right)^{x - 3} > \left( \frac{1}{6} \right)^{\sqrt{5x^{2} - 41x + 36}}\]
\[5x^{2} - 41x + 36 \geq 0\]
\[D = 1681 - 720 = 961 = 31^{2}\]
\[x_{1} = \frac{41 + 31}{10} = 7,2;\]
\[x_{2} = \frac{41 - 31}{10} = 1;\]
\[(x - 1)(x - 7,2) \geq 0\]
\[x \leq 1;\ \ x \geq 7,2.\]
\[M = ( - \infty;1\rbrack \cup \lbrack 7,2; + \infty).\]
\[6^{- 2(x - 3)} > 6^{- \sqrt{5x^{2} - 41x + 36}}\]
\[\sqrt{5x^{2} - 41x + 36} > 2x - 6\]
\[5x^{2} - 41x + 36 > (2x - 6)^{2}\]
\[5x^{2} - 41x + 36 >\]
\[> 4x^{2} - 24x + 36\]
\[Решение\ неравенства:\]
\[x \in ( - \infty;1\rbrack \cup \lbrack 17; + \infty).\]
\(Ответ:\ x \in ( - \infty;1\rbrack \cup \lbrack 17; + \infty).\)