\[\boxed{\mathbf{25.}}\]
\[\textbf{а)}\log_{\frac{\sqrt{10}}{3}}{(1 - 3x)} < 2\]
\[\log_{\frac{\sqrt{10}}{3}}{(1 - 3x)} < \log_{\frac{\sqrt{10}}{3}}\left( \frac{10}{9} \right)\]
\[1 - 3x > 0\]
\[3x < 1\]
\[x < \frac{1}{3}.\]
\[M = \left( - \infty;\frac{1}{3} \right).\]
\[1 - 3x < \frac{10}{9}\]
\[- 3x < \frac{1}{9}\]
\[x > - \frac{1}{27}.\]
\[Решение\ неравенства:\]
\[x \in \left( - \frac{1}{27};\frac{1}{3} \right).\]
\[Ответ:\ x \in \left( - \frac{1}{27};\frac{1}{3} \right).\]
\[\textbf{б)}\log_{\frac{\sqrt{6}}{3}}{(2x - 1)} > 2\]
\[\log_{\frac{\sqrt{6}}{3}}{(2x - 1)} > \log_{\frac{\sqrt{6}}{3}}\left( \frac{2}{3} \right)\]
\[2x - 1 > 0\]
\[2x > 1\]
\[x > 0,5.\]
\[M = (0,5; + \infty).\]
\[2x - 1 < \frac{2}{3}\]
\[2x < \frac{5}{3}\]
\[x < \frac{5}{6}.\]
\[Решение\ неравенства:\]
\[x \in \left( \frac{1}{2};\frac{5}{6} \right).\]
\[Ответ:\ x \in \left( \frac{1}{2};\ \frac{5}{6} \right).\]
\[\textbf{в)}\log_{0,5}{(x^{2} - 1)} > - 2\]
\[\log_{0,5}{(x^{2} - 1)} > \log_{0,5}{(4)}\]
\[x^{2} - 1 > 0\]
\[(x + 1)(x - 1) > 0\]
\[x < - 1;\ \ x > 1.\]
\[M = ( - \infty; - 1) \cup (1; + \infty).\]
\[x^{2} - 1 < 4\]
\[x^{2} < 5\]
\[- \sqrt{5} < x < \sqrt{5}.\]
\[Решение\ неравенства:\]
\[x \in \left( - \infty; - \sqrt{5} \right) \cup \left( 1;\sqrt{5} \right).\]
\[Ответ:\ x \in \left( - \infty; - \sqrt{5} \right) \cup \left( 1;\sqrt{5} \right).\]
\[\textbf{г)}\log_{0,5}\left( x^{2} + 1 \right) < - 1\]
\[\log_{0,5}\left( x^{2} + 1 \right) < \log_{0,5}(2)\]
\[x^{2} + 1 > 0\]
\[x = R.\]
\[M = R.\]
\[x^{2} + 1 > 2\]
\[x^{2} > 1\]
\[x < - 1;\ \ x > 1.\]
\[Решение\ неравенства:\]
\[x \in ( - \infty; - 1) \cup (1; + \infty).\]
\[Ответ:\ x \in ( - \infty; - 1) \cup (1; + \infty).\]