\[\boxed{\mathbf{24.}}\]
\[\textbf{а)}\log_{25}{(x^{2} - 7)} > \log_{25}{(x - 1)}\]
\[x^{2} - 7 > 0\]
\[x^{2} > 7\]
\[x > \sqrt{7};\ \ x < - \sqrt{7}.\]
\[x - 1 > 0\]
\[x > 1.\]
\[M = \left( \sqrt{7}; + \infty \right).\]
\[x^{2} - 7 > x - 1\]
\[x^{2} - x - 6 > 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = - 2;\ \ x_{2} = 3;\]
\[(x + 2)(x - 3) > 0\]
\[x < - 2;\ \ x > 3.\]
\[Решение\ неравенства:\]
\[x \in (3; + \infty).\]
\[Ответ:\ x \in (3; + \infty).\]
\[\textbf{б)}\log_{7}\left( x^{2} - 4 \right) > \log_{7}{(3x + 6)}\]
\[x^{2} - 4 > 0\]
\[(x + 2)(x - 2) > 0\]
\[x < - 2;\ \ x > 2.\]
\[3x + 6 > 0\]
\[3x > - 6\]
\[x > - 2.\]
\[M = (2; + \infty).\]
\[x^{2} - 4 > 3x + 6\]
\[x^{2} - 3x - 10 > 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = - 10\]
\[x_{1} = - 2;\ \ x_{2} = 5;\]
\[(x + 2)(x - 5) > 0\]
\[x < - 2;\ \ x > 5.\]
\[Решение\ неравенства:\]
\[x \in (5; + \infty).\]
\[Ответ:\ x \in (5; + \infty).\]
\[\textbf{в)}\log_{\frac{1}{7}}\left( x^{2} - 3x \right) > \log_{\frac{1}{7}}(2x - 4)\]
\[x^{2} - 3x > 0\]
\[x(x - 3) > 0\]
\[x < 0;\ \ x > 3.\]
\[2x - 4 > 0\]
\[2x > 4\]
\[x > 2.\]
\[M = (3; + \infty).\]
\[x^{2} - 3x < 2x - 4\]
\[x^{2} - 5x + 4 < 0\]
\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 4\]
\[x_{1} = 1;\ \ \ x_{2} = 4;\]
\[(x - 1)(x - 4) < 0\]
\[1 < x < 4.\]
\[Решение\ неравенства:\]
\[x \in (3;4).\]
\[Ответ:\ x \in (3;4).\]
\[\textbf{г)}\log_{\frac{1}{25}}\left( x^{2} - 4x \right) > \log_{\frac{1}{25}}{(2x - 5)}\]
\[x^{2} - 4x > 0\]
\[x(x - 4) > 0\]
\[x < 0;\ \ x > 4.\]
\[2x - 5 > 0\]
\[2x > 5\]
\[x > 2,5.\]
\[M = (4; + \infty).\]
\[x^{2} - 4x < 2x - 5\]
\[x^{2} - 6x + 5 < 0\]
\[D_{1} = 9 - 5 = 4\]
\[x_{1} = 3 + 2 = 5;\]
\[x_{2} = 3 - 2 = 1;\]
\[(x - 1)(x - 5) < 0\]
\[1 < x < 5.\]
\[Решение\ неравенства:\]
\[x \in (4;5).\]
\[Ответ:\ x \in (4;5).\]