Решебник по алгебре 11 класс Никольский Параграф 11. Равносильность неравенств на множествах Задание 20

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 20

\[\boxed{\mathbf{20.}}\]

\[\textbf{а)}\ \frac{x^{2}}{1 - \cos x} < \frac{x + 2}{1 - \cos x}\]

\[1 - \cos x \neq 0\]

\[\cos x \neq 1\]

\[x \neq 2\pi n.\]

\[M = ( - \infty;0) \cup (0; + \infty).\]

\[x^{2} < x + 2\]

\[x^{2} - x - 2 < 0\]

\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 2\]

\[x_{1} = 2;\ \ x_{2} = - 1;\]

\[(x + 1)(x - 2) < 0\]

\[x \in ( - 1;2).\]

\[Решение\ неравенства:\]

\[x \in ( - 1;0) \cup (0;2).\]

\[Ответ:\ x \in ( - 1;0) \cup (0;2).\]

\[\textbf{б)}\ \frac{x^{2}}{\cos x - 1} > \frac{- x + 2}{\cos x - 1}\]

\[\cos x - 1 \neq 0\]

\[\cos x \neq 1\]

\[x \neq 2\pi n.\]

\[M = ( - \infty;0) \cup (0; + \infty).\]

\[x^{2} > - x + 2\]

\[x^{2} + x - 2 > 0\]

\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = 2\]

\[(x + 1)(x - 2) > 0\]

\[- 2 < x < 1.\]

\[Решение\ неравенства:\]

\[x \in ( - 2;0) \cup (0;1).\]

\[Ответ:\ x \in ( - 2;0) \cup (0;1).\]

\[\textbf{в)}\ \frac{x^{2}}{1 - \sin x} < \frac{2x + 3}{1 - \sin x}\]

\[1 - \sin x \neq 0\]

\[\sin x \neq 1\]

\[x \neq \frac{\pi}{2} + 2\pi n.\]

\[M = \left( - \infty;\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2}; + \infty \right).\]

\[x^{2} < 2x + 3\]

\[x^{2} - 2x - 3 < 0\]

\[D_{1} = 1 + 3 = 4\]

\[x_{1} = 1 + 2 = 3;\]

\[x_{2} = 1 - 2 = - 1;\]

\[(x + 1)(x - 3) < 0\]

\[- 1 < x < 3.\]

\[Решение\ неравенства:\]

\[x \in \left( - 1;\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2};3 \right).\]

\[Ответ:\ x \in \left( - 1;\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2};3 \right).\]

\[\textbf{г)}\ \frac{x^{2}}{\sin x - 1} > \frac{x + 2}{\sin x - 1}\]

\[\sin x - 1 \neq 0\]

\[\sin x \neq 1\]

\[x \neq \frac{\pi}{2} + 2\pi n.\]

\[M = \left( - \infty;\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2}; + \infty \right).\]

\[x^{2} > x + 2\]

\[x^{2} - x - 2 > 0\]

\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 2\]

\[x_{1} = 2;\ \ x_{2} = - 1.\]

\[- 1 < x < 2.\]

\[Решение\ неравенства:\]

\[x \in \left( - 1;\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2};2 \right).\]

\[Ответ:\ x \in \left( - 1;\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2};2 \right).\]

Скачать ответ
Есть ошибка? Сообщи нам!