\[\boxed{\mathbf{15.}}\]
\[\textbf{а)}\ \sqrt{x} < \sqrt[4]{x + 3}\]
\[x \geq 0;\]
\[x + 3 \geq 0\]
\[x \geq - 3.\]
\[M = \lbrack 0;\ + \infty).\]
\[\left( \sqrt{x} \right)^{4} < \left( \sqrt[4]{x + 3} \right)^{4}\]
\[x^{2} < x + 3\]
\[x^{2} - x - 3 < 0\]
\[D = 1 + 12 = 13\]
\[x_{1} = \frac{1 + \sqrt{13}}{2};\]
\[x_{2} = \frac{1 - \sqrt{13}}{2};\]
\[\frac{1 - \sqrt{13}}{2} < x < \frac{1 + \sqrt{13}}{2}.\]
\[Ответ:x \in \left\lbrack 0;\ \frac{1 + \sqrt{13}}{2} \right).\]
\[\textbf{б)}\ \sqrt{x} > \sqrt[4]{x + 4}\]
\[x + 4 \geq 0\]
\[x \geq - 4.\]
\[x \geq 0.\]
\[M = \lbrack 0; + \infty).\]
\[\left( \sqrt{x} \right)^{4} > \left( \sqrt[4]{x + 4} \right)^{4}\]
\[x^{2} > x + 4\]
\[x^{2} - x - 4 > 0\]
\[D = 1 + 16 = 17\]
\[x_{1} = \frac{1 + \sqrt{17}}{2};\]
\[x_{2} = \frac{1 - \sqrt{17}}{2};\]
\[x < \frac{1 - \sqrt{17}}{2};\]
\[x > \frac{1 + \sqrt{17}}{2}.\]
\[Ответ:x \in \left( \frac{1 + \sqrt{17}}{2}; + \infty \right).\]
\[\textbf{в)}\ \sqrt{x + 1} > \sqrt[3]{2x + 1}\]
\[x + 1 \geq 0\]
\[x \geq - 1.\]
\[M = \lbrack - 1; + \infty).\]
\[\left( \sqrt{x + 1} \right)^{6} > \left( \sqrt[3]{2x + 1} \right)^{6}\]
\[(x + 1)^{3} > (2x + 1)^{2}\]
\[x^{3} + 3x^{2} + 3x + 1 >\]
\[> 4x^{2} + 4x + 1\]
\[x^{3} - x^{2} - x > 0\]
\[x\left( x^{2} - x - 1 \right) > 0\]
\[x^{2} - x - 1 = 0\]
\[D = 1 + 4 = 5\]
\[x_{1} = \frac{1 + \sqrt{5}}{2};\]
\[x_{2} = \frac{1 - \sqrt{5}}{2};\]
\[x\left( x - \frac{1 - \sqrt{5}}{2} \right)\left( x - \frac{1 + \sqrt{5}}{2} \right) > 0\]
\[x \in \left( \frac{1 - \sqrt{5}}{2};0 \right) \cup \left( \frac{1 + \sqrt{5}}{2}; + \infty \right).\]
\[Ответ:\ x \in \lbrack - 1;0) \cup \left( \frac{1 + \sqrt{5}}{2}; + \infty \right).\]
\[\textbf{г)}\ \sqrt{x} < \sqrt[3]{3x - 2}\]
\[x \geq 0\]
\[M = \lbrack 0; + \infty).\]
\[\left( \sqrt{x} \right)^{6} < \left( \sqrt[3]{3x - 2} \right)^{6}\]
\[x^{3} < (3x - 2)^{2}\]
\[x^{3} < 9x^{2} - 12x + 4\]
\[x^{3} - 9x^{2} + 12x - 4 < 0\]
\[\left( x^{3} - 1 \right) - 3\left( 3x^{2} - 4x + 1 \right) < 0\]
\[3x^{2} - 4x + 1 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = \frac{2 + 1}{3} = 1;\]
\[x_{2} = \frac{2 - 1}{3} = \frac{1}{3};\]
\[(x - 1)\left( x^{2} + x + 1 - 9x + 3 \right) < 0\]
\[(x - 1)\left( x^{2} - 8x + 4 \right) < 0\]
\[x^{2} - 8x + 4 = 0\]
\[D_{1} = 16 - 4 = 12\]
\[x_{1} = 4 + \sqrt{12} = 4 + 2\sqrt{3};\]
\[x_{2} = 4 - 2\sqrt{3};\]
\[x < 4 - 2\sqrt{3};\ 1 < x < 4 + 2\sqrt{3}.\]
\[Ответ:x \in \left( 1;4 + 2\sqrt{3} \right).\]