\[\boxed{\mathbf{14.}}\]
\[\textbf{а)}\ \sqrt{6x - 3} < |x + 1|\]
\[6x - 3 \geq 0\]
\[6x \geq 3\]
\[x \geq 0,5.\]
\[M = \lbrack 0,5; + \infty).\]
\[6x - 3 < (x + 1)^{2}\]
\[6x - 3 < x^{2} + 2x + 1\]
\[x^{2} - 4x + 4 > 0\]
\[(x - 2)^{2} > 0\]
\[x \neq 2.\]
\[Ответ:x \in \lbrack 0,5;2) \cup (2; + \infty).\]
\[\textbf{б)}\ \sqrt{6 + 3x} > |2x + 1|\]
\[6 + 3x \geq 0\]
\[3x \geq - 6\]
\[x \geq - 2.\]
\[M = \lbrack - 2; + \infty).\]
\[6 + 3x > (2x + 1)^{2}\]
\[6 + 3x > 4x^{2} + 4x + 1\]
\[4x^{2} + x - 5 < 0\]
\[D = 1 + 80 = 81\]
\[x_{1} = \frac{- 1 + 9}{8} = 1;\]
\[x_{2} = \frac{- 1 - 9}{8} = - 1,25.\]
\[(x + 1,25)(x - 1) < 0\]
\[- 1,25 < x < 1.\]
\[Ответ:x \in \lbrack - 1,25;1).\]
\[\textbf{в)}\ \sqrt{5x - 1} > |3x - 1|\]
\[5x - 1 \geq 0\]
\[5x \geq 1\]
\[x \geq 0,2.\]
\[M = \lbrack 0,2; + \infty).\]
\[5x - 1 > (3x - 1)^{2}\]
\[5x - 1 > 9x^{2} - 6x + 1\]
\[9x^{2} - 11x + 2 < 0\]
\[D = 121 - 72 = 49\]
\[x_{1} = \frac{11 + 7}{18} = 1;\]
\[x_{2} = \frac{11 - 7}{18} = \frac{4}{18} = \frac{2}{9}.\]
\[\left( x - \frac{2}{9} \right)(x - 1) < 0\]
\[\frac{2}{9} < x < 1.\]
\[Ответ:x \in \lbrack 0,2;1).\]
\[\textbf{г)}\ \sqrt{7x + 2} > |x + 2|\]
\[7x + 2 \geq 0\]
\[7x \geq - 2\]
\[x \geq - \frac{2}{7}.\]
\[M = \left\lbrack - \frac{2}{7}; + \infty \right).\]
\[7x + 2 > (x + 2)^{2}\]
\[7x + 2 > x^{2} + 4x + 4\]
\[x^{2} - 3x + 2 < 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = 2\]
\[x_{1} = 1;\ \ x_{2} = 2;\]
\[(x - 1)(x - 2) < 0\]
\[1 < x < 2.\]
\[Ответ:x \in (1;2).\]