\[\boxed{\mathbf{9.}}\]
\[\textbf{а)}\ \sqrt{2 - 2\sin\frac{x}{2}} = 1\]
\[- 1 \leq \sin\frac{x}{2} \leq 1\]
\[0 \leq 2 - 2\sin\frac{x}{2} \leq 4\]
\[2 - 2\sin\frac{x}{2} = 1\]
\[2\sin\frac{x}{2} = 1\]
\[\sin\frac{x}{2} = \frac{1}{2}\]
\[Ответ:x = \frac{\pi}{3} + 4\pi k;\]
\[x = \frac{5\pi}{3} + 4\pi m.\]
\[\textbf{б)}\ \sqrt{2\cos{3x} + 2} = 1\]
\[- 1 \leq \cos{3x} \leq 1\]
\[0 \leq 2\cos{3x} + 2 \leq 4\]
\[2\cos{3x} + 2 = 1\]
\[2\cos{3x} = - 1\]
\[\cos{3x} = - \frac{1}{2}\]
\[Ответ:x = \pm \frac{2\pi}{9} + \frac{2}{3}\text{πk.}\]