\[\boxed{\mathbf{8.}}\]
\[\textbf{а)}\ \sqrt{- 2x} = |x + 1|\]
\[1) - 2x \geq 0\]
\[x \leq 0.\]
\[2)\ |x + 1| \geq 0\]
\[x \in R.\]
\[M = ( - \infty;0\rbrack.\]
\[3) - 2x = (x + 1)^{2}\]
\[- 2x = x^{2} + 2x + 1\]
\[x^{2} + 4x + 1 = 0\]
\[D_{1} = 4 - 1 = 3\]
\[x_{1} = - 2 + \sqrt{3} < 0;\]
\[x_{2} = - 2 - 2\sqrt{3} < 0.\]
\[Ответ:x = - 2 \pm \sqrt{3}.\]
\[\textbf{б)}\ \sqrt{4x} = |x - 2|\]
\[1)\ 4x \geq 0\]
\[x \geq 0.\]
\[2)\ |x - 2| \geq 0\]
\[x \in R.\]
\[M = \lbrack 0; + \infty).\]
\[3)\ 4x = (x - 2)^{2}\]
\[4x = x^{2} - 4x + 4\]
\[x^{2} - 8x + 4 = 0\]
\[D_{1} = 16 - 4 = 12 = \left( 2\sqrt{3} \right)^{2}\]
\[x_{1} = 4 + 2\sqrt{3} > 0;\]
\[x_{2} = 4 - 2\sqrt{3} > 0.\]
\[Ответ:x = 4 \pm 2\sqrt{3}.\]
\[\textbf{в)}\ \sqrt{2 - x} = |x - 3|\]
\[1)\ 2 - x \geq 0\]
\[x \leq 2.\]
\[2)\ |x - 3| \geq 0\]
\[x \in R.\]
\[M = ( - \infty;2\rbrack.\]
\[3)\ 2 - x = (x - 3)^{2}\]
\[2 - x = x^{2} - 6x + 9\]
\[x^{2} - 5x + 7 = 0\]
\[D = 25 - 28 = - 3 < 0\]
\[нет\ корней.\]
\[Ответ:нет\ корней.\]
\[\textbf{г)}\ \sqrt{5 - x} = |x - 2|\]
\[1)\ 5 - x \geq 0\]
\[x \leq 5.\]
\[2)\ |x - 2| \geq 0\]
\[x \in R.\]
\[M = ( - \infty;5\rbrack.\]
\[3)\ 5 - x = (x - 2)^{2}\]
\[5 - x = x^{2} - 4x + 4\]
\[x^{2} - 3x - 1 = 0\]
\[D = 9 + 4 = 13\]
\[x_{1} = \frac{3 + \sqrt{13}}{2} < 5;\]
\[x_{2} = \frac{3 - \sqrt{13}}{2} < 5.\]
\[Ответ:x = \frac{3 \pm \sqrt{13}}{2}.\]