Решебник по алгебре 11 класс Никольский Параграф 10. Равносильность уравнений на множествах Задание 50

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 50

\[\boxed{\mathbf{50.}}\]

\[\textbf{а)}\ \left| x^{2} - 3x + 2 \right| = 2x - 2\]

\[x \in \lbrack 3;5\rbrack.\]

\[2x - 2 \geq 0\]

\[2x \geq 2\]

\[x \geq 1.\]

\[1)\ x^{2} - 3x + 2 = 2x - 2\]

\[x^{2} - 5x + 4 = 0\]

\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 4\]

\[x_{1} = 1\ (не\ подходит);\]

\[x_{2} = 4.\]

\[2) - x^{2} + 3x - 2 = 2x - 2\]

\[x^{2} - x = 0\]

\[x(x - 1) = 0\]

\[x = 0\ (не\ подходит);\ \ \]

\[x = 1\ (не\ подходит).\]

\[Ответ:x = 4.\]

\[\textbf{б)}\ \left| x^{2} - 2x - 8 \right| = x + 2\]

\[x \in \lbrack 0;4\rbrack.\]

\[x + 2 \geq 0\]

\[x \geq - 2.\]

\[1)\ x^{2} - 2x - 8 = x + 2\]

\[x^{2} - 3x - 10 = 0\]

\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = - 10\]

\[x_{1} = 5\ (не\ подходит);\]

\[x_{2} = - 2\ (не\ подходит).\]

\[2)\ - x^{2} + 2x + 8 = x + 2\]

\[x^{2} - x - 6 = 0\]

\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 6\]

\[x_{1} = 3;\]

\[x_{2} = - 2\ (не\ подходит).\]

\[Ответ:x = 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!