\[\boxed{\mathbf{42.}}\]
\[\textbf{а)}\ x^{\log_{\sqrt{x}}{2x}} = 4\]
\[x > 0;\]
\[x \neq 1.\]
\[M = (0;1) \cup (1; + \infty).\]
\[\log_{x}\sqrt{x} = \log_{x}x^{\frac{1}{2}} = \frac{1}{2}\log_{x}x =\]
\[= \frac{1}{2};\]
\[2\log_{x}{2x} = \log_{x}(2x)^{2} =\]
\[= \log_{x}{4x^{2}};\]
\[x^{\log_{x}{4x^{2}}} = 4\]
\[4x^{2} = 4\]
\[x^{2} = 1\]
\[x = 1\ (не\ подходит);\]
\[x = - 1 < 0.\]
\[Ответ:нет\ корней.\]
\[\textbf{б)}\ x^{2 - lg^{2}x - \lg x^{2}} - \frac{1}{x} = 0\]
\[M = (0; + \infty).\]
\[x^{2 - lg^{2}x - \lg x^{2}} = \frac{1}{x}\]
\[x^{2 - lg^{2}x - \lg x^{2}} = x^{- 1}\]
\[2 - lg^{2}x - \lg x^{2} - - 1\]
\[lg^{2}x + \lg x^{2} - 3 = 0\]
\[x = 10^{- 3} = 0,001;\]
\[x = 10^{1} = 10.\]
\[Еще\ один\ корень\ x = 1:\]
\[1^{2 - 0 - 0} - 1 = 0\]
\[1 - 1 = 0\]
\[0 = 0.\]
\[Ответ:x = 0,001;x = 1;x = 10.\]