\(\boxed{\mathbf{41.}}\)
\[5x - 1 > 0\]
\[x > 0,2;\]
\[5x^{2} - x > 0\]
\[5x(x - 0,2) > 0\]
\[x < 0;x > 0,2.\]
\[3x > 0\]
\[x > 0.\]
\[3x \neq 1\]
\[x \neq \frac{1}{3}.\]
\[M = \left( 0,2;\frac{1}{3} \right) \cup \left( \frac{1}{3}; + \infty \right).\]
\[\log_{3}\left( 5x^{2} - x \right) =\]
\[= \log_{3}{x(5x - 1)} =\]
\[= \log_{3}x + \log_{3}(5x - 1);\]
\[\log_{3}x = a;\ \ \log_{3}(5x - 1) = b:\]
\[ab + b^{2} - 1 - a = 0\]
\[(b - 1)(a + b + 1) = 0\]
\[b - 1 = 0;\]
\[a + b + 1 = 0.\]
\[\log_{3}(5x - 1) - 1 = 0\]
\[\log_{3}(5x - 1) = \log_{3}3\]
\[5x - 1 = 3\]
\[5x = 4\]
\[x = 0,8.\]
\[\log_{3}x + \log_{3}(5x - 1) + 1 = 0\]
\[\log_{3}{x(5x - 1)} = \log_{3}\frac{1}{3}\]
\[5x^{2} - x = \frac{1}{3}\]
\[15x^{2} - 3x - 1 = 0\]
\[D = 9 + 60 = 69\]
\[x_{1} = \frac{3 + \sqrt{69}}{30};\]
\[x_{2} = \frac{3 - \sqrt{69}}{30} < 0.\]
\[Ответ:x = 0,8;\ \ x = \frac{3 + \sqrt{69}}{30}.\]
\[20x - 1 > 0\]
\[20x > 1\]
\[x > 0,05.\]
\[20x^{2} - x > 0\]
\[20x(x - 0,05) > 0\]
\[x < 0;\ \ x > 0,05.\]
\[16x > 0\]
\[x > 0.\]
\[16x \neq 1\]
\[x \neq \frac{1}{16}.\]
\[M = \left( 0,05;\frac{1}{16} \right) \cup \left( \frac{1}{16}; + \infty \right).\]
\[1)\ \log_{4}(20x - 1) - 2 = 0\]
\[\log_{4}(20x - 1) = 2\]
\[20x - 1 = 2^{4}\]
\[20x - 1 = 16\]
\[20x = 17\]
\[x = \frac{17}{20}\]
\[x = 0,85.\]
\[2)\log_{4}x + \log_{4}(20x - 1) + 2 =\]
\[= 0\]
\[20x^{2} - x = 4^{- 2}\]
\[2x^{2} - x = \frac{1}{16}\]
\[320x^{2} - 16x - 1 = 0\]
\[D_{1} = 64 + 320 = 384\]
\[x_{1} = \frac{8 + 8\sqrt{6}}{320} = \frac{1 + \sqrt{6}}{40};\]
\[x_{2} = \frac{8 - 8\sqrt{6}}{320} = \frac{1 - \sqrt{6}}{40} < 0.\]
\[Ответ:x = 0,85;\ \ x = \frac{1 + \sqrt{6}}{40}.\]