\[\boxed{\mathbf{37.}}\]
\[\textbf{а)}\lg(x - 1) + \sqrt{9 - x^{2}} =\]
\[= \lg{(x - 1)} + \sqrt{x + 5}\]
\[9 - x^{2} \geq 0\]
\[x^{2} - 9 \leq 0\]
\[(x + 3)(x - 3) \leq 0\]
\[- 3 \leq x \leq 3.\]
\[x + 5 \geq 0\]
\[x \geq - 5.\]
\[x - 1 > 0\]
\[x > 1.\]
\[M = (1;3\rbrack.\]
\[\sqrt{9 - x^{2}} = \sqrt{x + 5}\]
\[9 - x^{2} = x + 5\]
\[x^{2} + x - 4 = 0\]
\[D = 1 + 16 = 17\]
\[x_{1} = \frac{- 1 + \sqrt{17}}{2};\]
\[x_{2} = \frac{- 1 - \sqrt{17}}{2} < 1.\]
\[Ответ:\ \frac{- 1 + \sqrt{17}}{2}.\]
\[\textbf{б)}\lg(1 - x) + \sqrt{25 - x^{2}} =\]
\[= \lg{(1 - x)} + \sqrt{x + 16}\]
\[25 - x^{2} \geq 0\]
\[x^{2} - 25 \leq 0\]
\[(x + 5)(x - 5) \leq 0\]
\[- 5 \leq x \leq 5.\]
\[x + 16 \geq 0\]
\[x \geq - 16.\]
\[1 - x > 0\]
\[x < 1.\]
\[M = \lbrack - 5;1).\]
\[\sqrt{25 - x^{2}} = \sqrt{x + 16}\]
\[25 - x^{2} = x + 16\]
\[x^{2} + x - 9 = 0\]
\[D = 1 + 36 = 37\]
\[x_{1} = \frac{- 1 - \sqrt{37}}{2};\]
\[x_{2} = \frac{- 1 + \sqrt{37}}{2} > 1.\]
\[Ответ:\ x = \frac{- 1 - \sqrt{37}}{2}.\]