\[\boxed{\mathbf{36.}}\]
\[\textbf{а)}\lg(8x + 11) + \sqrt{x} =\]
\[= \lg{(x^{2} + 2)} + \sqrt{x}\]
\[x \geq 0;\]
\[8x + 11 > 0\]
\[x > - \frac{11}{8}.\]
\[M = \lbrack 0; + \infty).\]
\[\lg{(8x + 11)} = \lg\left( x^{2} + 2 \right)\]
\[8x + 11 = x^{2} + 2\]
\[x^{2} - 8x - 9 = 0\]
\[D_{1} = 16 + 9 = 25\]
\[x_{1} = 4 + 5 = 9;\]
\[x_{2} = 4 - 5 = - 1 < 0.\]
\[Ответ:x = 9.\]
\[\textbf{б)}\lg(x + 8) + \sqrt{- x} =\]
\[= \lg{(x^{2} + 2)} + \sqrt{- x}\]
\[- x \geq 0\]
\[x \leq 0.\]
\[x + 8 > 0\]
\[x > - 8.\]
\[x^{2} + 2 > 0\]
\[x^{2} > - 2\]
\[x \in R.\]
\[M = ( - 8;0\rbrack.\]
\[x + 8 = x^{2} + 2\]
\[x^{2} + 2 - x - 8 = 0\]
\[x^{2} - x - 6 = 0\]
\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = 3 > 0;\ \ \]
\[x_{2} = - 2.\]
\[Ответ:x = - 2.\]