\[\boxed{\mathbf{27.}}\]
\[\textbf{а)}\ x^{2} + 2x + \log_{2}(x + 1) =\]
\[= 15 + \log_{2}{(x + 1)}\]
\[x + 1 > 0\]
\[x > - 1.\]
\[M = ( - 1; + \infty).\]
\[x^{2} + 2x - 15 = 0\]
\[D_{1} = 1 + 15 = 16\]
\[x_{1} = - 1 + 4 = 3;\]
\[x_{2} = - 1 - 4 = - 5 < - 1.\]
\[Ответ:x = 3.\]
\[\textbf{б)}\ x^{2} - 6x - \log_{3}(1 - x) =\]
\[= 7 - \log_{3}(1 - x)\]
\[1 - x > 0\]
\[x < 1.\]
\[M = ( - \infty;1).\]
\[x^{2} - 6x - 7 = 0\]
\[D_{1} = 9 + 7 = 16\]
\[x_{1} = 3 + 4 = 7 > 1;\]
\[x_{2} = 3 - 4 = - 1.\]
\[Ответ:x = - 1.\]
\[\textbf{в)}\ x^{2} + \log_{4}x = 7x + \log_{4}x\]
\[x > 0\]
\[M = (0; + \infty).\]
\[x^{2} = 7x\]
\[x^{2} - 7x = 0\]
\[x(x - 7) = 0\]
\[x = 0 - не\ подходит;\]
\[x - 7 = 0\]
\[x = 7.\]
\[Ответ:x = 7.\]
\[\textbf{г)}\ x^{2} - \log_{5}( - x) =\]
\[= - 6x - \log_{5}{( - x)}\]
\[- x > 0\]
\[x < 0\]
\[M = ( - \infty;0).\]
\[x^{2} = - 6x\]
\[x^{2} + 6x = 0\]
\[x(x + 6) = 0\]
\[x = 0 - не\ подходит;\]
\[x + 6 = 0\]
\[x = - 6.\]
\[Ответ:x = - 6.\]