\[\boxed{\mathbf{19.}}\]
\[\textbf{а)}\ \frac{2\sin x}{\sqrt{- x^{2} + 4x - 3}} =\]
\[= \frac{1}{\sqrt{- x^{2} + 4x - 3}}\]
\[1) - x^{2} + 4x - 3 > 0\]
\[x^{2} - 4x + 3 < 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = 2 + 1 = 3;\]
\[x_{2} = 2 - 1 = 1;\]
\[(x - 1)(x - 3) < 0\]
\[- 1 < x < 3.\]
\[M = (1;3).\]
\[2)\ 2\sin x = 1\]
\[\sin x = \frac{1}{2}\]
\[x_{n} = \frac{\pi}{6} + 2\pi n\ (не\ подходит);\]
\[x_{k} = \frac{5\pi}{6} + 2\pi k;\]
\[x = \frac{5\pi}{6}.\]
\[Ответ:x = \frac{5\pi}{6}.\]
\[\textbf{б)}\ \frac{2\sin x}{\sqrt{3 - 2x - x^{2}}} =\]
\[= \frac{\sqrt{2}}{\sqrt{3 - 2x - x^{2}}}\]
\[1)\ 3 - 2x - x^{2} > 0\]
\[x^{2} + 2x - 3 < 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = - 1 + 2 = 1;\]
\[x_{2} = - 1 - 2 = - 3;\]
\[(x + 3)(x - 1) < 0\]
\[M = ( - 3;1).\]
\[2)\ 2\sin x = \sqrt{2}\]
\[\sin x = \frac{\sqrt{2}}{2}\]
\[x_{k} = \frac{3\pi}{4} + 2\pi k\ (не\ подходит);\]
\[x_{n} = \frac{\pi}{4} + 2\pi n;\]
\[x = \frac{\pi}{4}.\]
\[Ответ:x = \frac{\pi}{4}.\]
\[\textbf{в)}\ \frac{2\cos x}{\sqrt{\pi^{2} - 4x^{2}}} = \frac{\sqrt{2}}{\sqrt{\pi^{2} - 4x^{2}}}\]
\[1)\ \pi^{2} - 4x^{2} > 0\]
\[4x^{2} < \pi^{2}\]
\[x^{2} < \frac{\pi^{2}}{4}\]
\[x < \pm \frac{\pi}{2}.\]
\[M = \left( - \frac{\pi}{2};\frac{\pi}{2} \right).\]
\[2)\ 2\cos x = \sqrt{2}\]
\[\cos x = \frac{\sqrt{2}}{2}\]
\[x_{k} = - \frac{\pi}{4} + 2\pi k;\]
\[x_{1} = - \frac{\pi}{4}.\]
\[x_{n} = \frac{\pi}{4} + 2\pi n;\]
\[x_{2} = \frac{\pi}{4}.\]
\[Ответ:x = \pm \frac{\pi}{4}.\]
\[\textbf{г)}\ \frac{2\cos x}{\sqrt{\pi^{2} - x^{2}}} = \frac{- 1}{\sqrt{\pi^{2} - x^{2}}}\]
\[1)\ \pi^{2} - x^{2} > 0\]
\[x^{2} < \pi^{2}\]
\[x < \pm \pi.\]
\[M = ( - \pi;\ \pi).\]
\[2)\ 2\cos x = - 1\]
\[\cos x = - \frac{1}{2}\]
\[x_{n} = \frac{2\pi}{3} + 2\pi n;\ \ \]
\[x_{1} = \frac{2\pi}{3};\]
\[x_{k} = - \frac{2\pi}{3} + 2\pi n;\ \ \]
\[x_{2} = - \frac{2\pi}{3}.\]
\[Ответ:x = \pm \frac{2\pi}{3}.\]