\[\boxed{\mathbf{12.}}\]
\[\textbf{а)}\ \sqrt[3]{x} = \sqrt{x - 4}\]
\[x - 4 \geq 0\]
\[x \geq 4.\]
\[x \geq 0.\]
\[M = \lbrack 4; + \infty).\]
\[\left( \sqrt[3]{x} \right)^{6} = \left( \sqrt{x - 4} \right)^{6}\]
\[x^{2} = (x - 4)^{3}\]
\[x^{2} = x^{3} - 12x^{2} + 48x - 64\]
\[x^{3} - 13x^{2} + 48x - 64 = 0\]
\[Один\ из\ корней\ x = 8 > 4:\]
\[(x - 8)\left( x^{2} - 5x + 8 \right) = 0\]
\[x^{2} - 5x + 8 = 0\]
\[D = 25 - 32 = - 7 < 0\]
\[корней\ нет.\]
\[Ответ:x = 8.\]
\[\textbf{б)}\ \sqrt[3]{x} = \sqrt{2 - x}\]
\[2 - x \geq 0\]
\[x \leq 2.\]
\[x \geq 0.\]
\[M = \lbrack 0;2\rbrack.\]
\[\left( \sqrt[3]{x} \right)^{6} = \left( \sqrt{2 - x} \right)^{6}\]
\[x^{2} = (2 - x)^{3}\]
\[x^{2} = 8 - 12x + 6x^{2} - x^{3}\]
\[x^{3} - 5x^{2} + 12x - 8 = 0\]
\[Один\ из\ корней\ x = 1:\]
\[(x - 1)\left( x^{2} - 4x + 8 \right) = 0\]
\[x^{2} - 4x + 8 = 0\]
\[D_{1} = 4 - 8 = - 4 < 0\]
\[нет\ корней.\]
\[Ответ:x = 1.\]
\(в)\ \sqrt[3]{x + 3} = \sqrt{x - 1}\)
\[1)\ x - 1 \geq 0\]
\[x \geq 1.\]
\[2)\ x + 3 \geq 0\]
\[x \geq - 3.\]
\[M = \lbrack 1; + \infty).\]
\[\left( \sqrt[3]{x + 3} \right)^{6} = \left( \sqrt{x - 1} \right)^{6}\]
\[(x + 3)^{2} = (x - 1)^{3}\]
\[x^{2} + 6x + 9 = x^{3} - 3x^{2} + 3x - 1\]
\[x^{3} - 4x^{2} - 3x - 10 = 0\]
\[Один\ из\ корней\ x = 5:\]
\[(x - 5)\left( x^{2} + x + 2 \right) = 0\]
\[x^{2} + x + 2 = 0\]
\[D = 1 - 8 = - 7 < 0\]
\[нет\ корней.\]
\[Ответ:x = 5.\]
\[\textbf{г)}\ \sqrt[3]{x + 2} = \sqrt{- x}\]
\[1) - x \geq 0\]
\[x \leq 0.\]
\[2)\ x + 2 \geq 0\]
\[x \geq - 2.\]
\[M = \lbrack - 2;0\rbrack.\]
\[3)\ \left( \sqrt[3]{x + 2} \right)^{6} = \left( \sqrt{- x} \right)^{6}\]
\[(x + 2)^{2} = ( - x)^{3}\]
\[x^{2} + 4x + 4 = - x^{3}\]
\[x^{3} + x^{2} + 4x + 4 = 0\]
\[x^{2}(x + 1) + 4(x + 1) = 0\]
\[(x + 1)\left( x^{2} + 4 \right) = 0\]
\[x = - 1.\]
\[Ответ:x = - 1.\]