\[\boxed{\mathbf{11.}}\]
\[\textbf{а)}\ \sqrt{x - 4}\sqrt{x + 4} = \sqrt{6}\]
\[1)\ x - 4 \geq 0\]
\[x > 4.\]
\[2)\ x + 4 \geq 0\]
\[x \geq - 4.\]
\[M = \lbrack 4; + \infty).\]
\[3)\ (x - 4)(x + 4) = 6\]
\[x^{2} - 16 = 6\]
\[x^{2} = 22\]
\[x = - \sqrt{22} < 4;\]
\[x = \sqrt{22} > 4.\]
\[Ответ:x = \sqrt{22}.\]
\[\textbf{б)}\ \sqrt{x - 3}\sqrt{x + 3} = \sqrt{5}\]
\[1)\ x - 3 \geq 0\]
\[x \geq 3.\]
\[2)\ x + 3 \geq 0\]
\[x \geq - 3.\]
\[M = \lbrack 3; + \infty).\]
\[3)\ (x - 3)(x + 3) = 5\]
\[x^{2} - 9 = 5\]
\[x^{2} = 14\]
\[x = - \sqrt{14} < 3;\]
\[x = \sqrt{14} > 3.\]
\[Ответ:x = \sqrt{14}.\]
\[\textbf{в)}\ \sqrt{x - 5}\sqrt{x + 5} = \sqrt{2}\]
\[1)\ x - 5 \geq 0\]
\[x \geq 5.\]
\[2)\ x + 5 \geq 0\]
\[x \geq - 5.\]
\[M = \lbrack 5; + \infty).\]
\[3)\ (x - 5)(x + 5) = 2\]
\[x^{2} - 25 = 2\]
\[x^{2} = 27\]
\[x = - 3\sqrt{3} < 5;\]
\[x = 3\sqrt{3} > 5.\]
\[Ответ:x = 3\sqrt{3}.\]
\[\textbf{г)}\ \sqrt{x - 2}\sqrt{x + 2} = \sqrt{8}\]
\[1)\ x - 2 \geq 0\]
\[x \geq 2.\]
\[2)\ x + 2 \geq 0\]
\[x \geq - 2.\]
\[M = \lbrack 2; + \infty).\]
\[3)\ (x - 2)(x + 2) = 8\]
\[x^{2} - 4 = 8\]
\[x^{2} = 12\]
\[x = 2\sqrt{3} > 2;\]
\[x = - 2\sqrt{3} < 2.\]
\[Ответ:x = 2\sqrt{3}.\]