Решебник по алгебре 11 класс Никольский Параграф 9. Равносильность уравнений и неравенств системам Задание 9

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 9

\[\boxed{\mathbf{9.}}\]

\[\textbf{а)}\ \sqrt{2x + 1} = x - 1\]

\[\left\{ \begin{matrix} 2x + 1 = (x - 1)^{2} \\ x - 1 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]

\[\left\{ \begin{matrix} 2x + 1 = x^{2} - 2x + 1 \\ x \geq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} - 4x = 0 \\ x \geq 1\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 4x = 0\]

\[x(x - 4) = 0\]

\[x = 0\ (не\ подходит);\]

\[x = 4.\]

\[Ответ:x = 4.\]

\[\textbf{б)}\ \sqrt{2x - 1} = x - 2\]

\[\left\{ \begin{matrix} 2x - 1 = (x - 2)^{2} \\ x - 2 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 2x - 1 = x^{2} - 4x + 4 \\ x \geq 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} - 6x + 5 = 0 \\ x \geq 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 6x + 5 = 0\]

\[D_{1} = 9 - 5 = 4\]

\[x_{1} = 3 + 2 = 5;\]

\[x_{2} = 3 - 2 = 1\ (не\ подходит).\]

\[Ответ:x = 5.\]

\[\textbf{в)}\ \sqrt{147 - 2x} = x - 2\]

\[\left\{ \begin{matrix} 147 - 2x = (x - 2)^{2} \\ x - 2 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 147 - 2x = x^{2} - 4x + 4 \\ x \geq 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} - 2x - 143 = 0 \\ x \geq 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 2x - 143 = 0\]

\[D_{1} = 1 + 143 = 144\]

\[x_{1} = 1 + 12 = 13;\]

\[x_{2} = 1 - 12 =\]

\[= - 11\ (не\ подходит).\]

\[Ответ:x = 13.\]

\[\textbf{г)}\ \sqrt{- 8x + 108} = x - 3\]

\[\left\{ \begin{matrix} - 8x + 108 = (x - 3)^{2} \\ x - 3 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} - 8x + 108 = x^{2} - 6x + 9 \\ x \geq 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} + 2x - 99 = 0 \\ x \geq 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} + 2x - 99 = 0\]

\[D_{1} = 1 + 99 = 100\]

\[x_{1} = - 1 + 10 = 9;\]

\[x_{2} = - 1 - 10 =\]

\[= - 11\ (не\ подходит).\]

\[Ответ:x = 9.\]

Скачать ответ
Есть ошибка? Сообщи нам!