Решебник по алгебре 11 класс Никольский Параграф 9. Равносильность уравнений и неравенств системам Задание 62

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 62

\[\boxed{\mathbf{62.}}\]

\[\textbf{а)}\log_{x}(9x + 1) < \log_{x}{|10x - 1|}\]

\[1)\ \left\{ \begin{matrix} 0 < 9x + 1 < |10x - 1| \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 10x - 1 > 9x + 1 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 2 \\ x > 1 \\ \end{matrix} \right.\ \]

\[x > 2.\]

\[2)\ \left\{ \begin{matrix} 9x + 1 > |10x - 1| > 0 \\ 0 < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[10x - 1 \neq 0\]

\[x \neq 0,1.\]

\[1.\ \left\{ \begin{matrix} 9x + 1 > - 10x + 1 \\ 0 < x < 0,1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]

\[\left\{ \begin{matrix} 19x > 0\ \ \ \ \ \ \ \\ 0 < x < 0,1 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 0\ \ \ \ \ \ \ \ \ \ \ \\ 0 < x < 0,1 \\ \end{matrix} \right.\ \]

\[0 < x < 0,1.\]

\[2.\ \left\{ \begin{matrix} - 9x - 1 < 10x - 1 \\ 0,1 < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 19x > 0\ \ \ \ \ \ \ \\ 0,1 < x < 1 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 0\ \ \ \ \ \ \ \ \ \ \ \ \\ 0,1 < x < 1 \\ \end{matrix} \right.\ \]

\[0,1 < x < 1.\]

\[Объединим\ полученные\ \]

\[результаты:\]

\[x \in (0;0,1) \cup (0,1;1) \cup (2; + \infty).\]

\[Ответ:\ \]

\[x \in (0;0,1) \cup (0,1;1) \cup (2; + \infty)\text{.\ }\]

\[1)\ \left\{ \begin{matrix} 0 < 12x + 1 < |13x - 1| \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 13x - 1 > 12x + 1 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 2 \\ x > 1 \\ \end{matrix} \right.\ \]

\[x > 2.\]

\[2)\ \left\{ \begin{matrix} 12x + 1 > |13x - 1| > 0 \\ 0 < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[1.\ \left\{ \begin{matrix} - 12x - 1 < 13x - 1 \\ 0 < x < \frac{1}{13}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 25x > 0\ \ \ \ \ \ \\ 0 < x < \frac{1}{13} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 0\ \ \ \ \ \ \ \ \ \\ 0 < x < \frac{1}{13} \\ \end{matrix} \right.\ \]

\[0 < x < \frac{1}{13}.\]

\[2.\ \left\{ \begin{matrix} 13x - 1 < 12x + 1 \\ \frac{1}{13} < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x < 2\ \ \ \ \ \ \ \ \ \ \\ \frac{1}{13} < x < 1 \\ \end{matrix} \right.\ \]

\[\frac{1}{13} < x < 1.\]

\[Объединим\ полученные\ \]

\[результаты:\]

\[x \in \left( 0;\frac{1}{13} \right) \cup \left( \frac{1}{13};1 \right) \cup (2; + \infty).\]

\[Ответ:\ \]

\[x \in \left( 0;\frac{1}{13} \right) \cup \left( \frac{1}{13};1 \right) \cup (2; + \infty).\]

\[\textbf{в)}\log_{x}{(6x + 1)} < \log_{x}{|7x - 1|}\]

\[1)\ \left\{ \begin{matrix} 0 < 6x + 1 < |7x - 1| \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} |7x - 1| > 6x + 1 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 7x - 1 > 6x + 1 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 2 \\ x > 1 \\ \end{matrix} \right.\ \]

\[x > 2.\]

\[2)\ \left\{ \begin{matrix} 6x + 1 > |7x - 1| > 0 \\ 0 < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[1.\ \left\{ \begin{matrix} - 6x - 1 < 7x - 1 \\ 0 < x < \frac{1}{7}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 13x > 0\ \ \ \ \\ 0 < x < \frac{1}{7} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 0\ \ \ \ \ \ \ \ \\ 0 < x < \frac{1}{7} \\ \end{matrix} \right.\ \]

\[0 < x < \frac{1}{7}.\]

\[2.\ \left\{ \begin{matrix} 7x - 1 < 6x + 1 \\ \frac{1}{7} < x < 1\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x < 2\ \ \ \ \ \ \ \ \ \\ \frac{1}{7} < x < 1 \\ \end{matrix} \right.\ \]

\[\frac{1}{7} < x < 1.\]

\[Объединим\ полученные\ \]

\[результаты:\]

\[x \in \left( 0;\frac{1}{7} \right) \cup \left( \frac{1}{7};1 \right) \cup (2; + \infty).\]

\[Ответ:\ \]

\[x \in \left( 0;\frac{1}{7} \right) \cup \left( \frac{1}{7};1 \right) \cup (2; + \infty).\]

\[\textbf{г)}\log_{x}{(17x + 1)} < \log_{x}|18x - 1|\]

\[1)\ \left\{ \begin{matrix} 0 < 17x + 1 < |18x - 1| \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} |18x - 1| > 17x + 1 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 18x - 1 > 17x + 1 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 2 \\ x > 1 \\ \end{matrix} \right.\ \]

\[x > 2.\]

\[2)\ \left\{ \begin{matrix} 17x + 1 > |18x - 1| > 0 \\ 0 < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[1.\ \left\{ \begin{matrix} - 17x - 1 < 18x - 1 \\ 0 < x < \frac{1}{18}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 35x > 0\ \ \ \ \ \ \\ 0 < x < \frac{1}{18} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x > 0\ \ \ \ \ \ \ \ \ \ \ \\ 0 < x < \frac{1}{18} \\ \end{matrix} \right.\ \]

\[0 < x < \frac{1}{18}.\]

\[2.\ \left\{ \begin{matrix} 18x - 1 < 17x + 1 \\ \frac{1}{18} < x < 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x < 2\ \ \ \ \ \ \ \ \ \ \\ \frac{1}{18} < x < 1 \\ \end{matrix} \right.\ \]

\[\frac{1}{18} < x < 1.\]

\[Объединим\ полученные\ \]

\[результаты:\]

\[x \in \left( 0;\frac{1}{18} \right) \cup \left( \frac{1}{18};1 \right) \cup (2; + \infty).\]

\[Ответ:\ \]

\[x \in \left( 0;\frac{1}{18} \right) \cup \left( \frac{1}{18};1 \right) \cup (2; + \infty).\]

Скачать ответ
Есть ошибка? Сообщи нам!