\[\boxed{\mathbf{61.}}\]
\[|x| \leq \frac{3x^{2} + 6x - 24}{x^{2} + 2x - 8}\]
\[|x| \leq \frac{3 \cdot (x^{2} + 2x - 8)}{x^{2} + 2x - 8}\]
\[|x| \leq 3\]
\[- 3 \leq x \leq 3.\]
\[ОДЗ:\]
\[x^{2} + 2x - 8 \neq 0\]
\[D_{1} = 1 + 8 = 9\]
\[x_{1} = - 1 + 3 = 2;\]
\[x_{2} = - 1 - 3 = - 4.\]
\[x \neq - 4;\ \ x \neq 2.\]
\[x \in \lbrack - 3;2) \cup (2;3\rbrack.\]
\[Ответ:\ x \in \lbrack - 3;2) \cup (2;3\rbrack.\]
\[|x| \leq \frac{4x^{2} - 12x - 40}{x^{2} - 3x - 10}\]
\[|x| \leq \frac{4(x^{2} - 3x - 10)}{x^{2} - 3x - 10}\]
\[|x| \leq 4\]
\[- 4 \leq x \leq 4.\]
\[ОДЗ:\]
\[x^{2} - 3x - 10 \neq 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = - 10\]
\[x_{1} = 5;\ \ \ x_{2} = - 2.\]
\[x \neq - 2;\ \ x \neq 5.\]
\[x \in \lbrack - 4; - 2) \cup ( - 2;4\rbrack.\]
\[Ответ:\ x \in \lbrack - 4; - 2) \cup ( - 2;4\rbrack.\]