\[\boxed{\mathbf{34.}}\]
\[\frac{x}{x - a} + \frac{1}{x + a} = \frac{2}{x^{2} - a^{2}}\]
\[\frac{x^{\backslash\text{(}x + a)}}{x - a} + \frac{1^{\backslash(x - a)}}{x + a} - \frac{2}{(x - a)(x + a)} = 0\]
\[\frac{x^{2} + ax + x - a - 2}{(x - a)(x + a)} = 0\]
\[\frac{x^{2} + (a + 1)x - (a + 2)}{x^{2} - a^{2}} = 0\]
\[\left\{ \begin{matrix} x^{2} + (a + 1)x - (a + 2) = 0 \\ x^{2} - a^{2} \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + (a + 1)x - (a + 2) = 0\]
\[Уравнение\ имеет\ один\ корень\]
\[\ при\ D = 0.\]
\[x^{2} + (a + 1)x - (a + 2) = 0\]
\[D = (a + 1)^{2} + 4 \cdot (a + 2) =\]
\[= a^{2} + 2a + 1 + 4a + 8 =\]
\[= a^{2} + 6a + 9 =\]
\[= (a + 3)^{2}\]
\[(a + 3)^{2} = 0\]
\[a + 3 = 0\]
\[a = - 3.\]
\[При\ a = - 3:\]
\[x = \frac{- (a + 1)}{2}.\]
\[При\ a \neq - 3:\]
\[x_{1} = \frac{- a - 1 - (a + 3)}{2} =\]
\[= \frac{- 2a - 4}{2} = - a - 2;\]
\[x_{2} = \frac{- a - 1 + a + 3}{2} = \frac{4}{2} = 2.\]
\[x^{2} - a^{2} \neq 0\]
\[(x - a)(x + a) \neq 0\]
\[x \neq a;\ \ a \neq - a.\]
\[При\ x = - a - 2 = a:\]
\[a = - 1.\]
\[При\ x = - a - 2 = - a:\]
\[решений\ нет.\]
\[Ответ:при\ a = - 3;a = - 1.\]