\[\boxed{\mathbf{33.}}\]
\[\textbf{а)}\sin\frac{\text{πx}}{3}\left( \lg(x + 5) + \lg(400 - x) \right) = 0\]
\[1)\ \left\{ \begin{matrix} \sin\frac{\text{πx}}{3} = 0\ \ \ \\ x + 5 > 0\ \ \ \ \ \\ 400 - x > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{\text{πx}}{3} = \pi k \\ x > - 5\ \\ x < 400 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 3k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - 5 < x < 400 \\ \end{matrix} \right.\ \]
\[- 5 < x < 400\]
\[x = 3k\]
\[k = - 1;0;\ldots;135;\]
\[система\ имеет\ 135\ корней.\]
\[2)\ \left\{ \begin{matrix} \lg{(x + 5)} + \lg{(400 - x)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \lg{(x + 5)} = \frac{1}{\lg(400 - x)} \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x + 5 = \frac{1}{400 - x} \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(x + 5)(400 - x) = 1\]
\[400x + 2000 - x^{2} - 5x - 1 = 0\]
\[- x^{2} + 395x + 1999 = 0\]
\[x^{2} - 395x - 1999 = 0\]
\[D = 395^{2} + 4 \cdot 1999 > 0\]
\[уравнение\ имеет\ два\ корня.\]
\[Всего\ корней:\]
\[135 + 2 = 137.\]
\[Ответ:137\ корней.\]
\[1)\ \left\{ \begin{matrix} \cos\frac{\pi(x - 3)}{2} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left( \frac{x}{4} - 1 \right)\left( 200 - \frac{3x}{2} \right) \geq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{\pi(x - 3)}{2} = \frac{\pi}{2} + \pi k\ \ \ \ \ \ \\ (x - 4)(400 - 3x) \geq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 4 + 2k\ \ \ \\ 4 \leq x \leq \frac{400}{3} \\ \end{matrix} \right.\ \]
\[4 \leq x \leq \frac{400}{3}:\]
\[k = 0;1;2;\ldots;129\frac{1}{3};\]
\[система\ имеет\ 130\ корней.\]
\[2)\ \left\{ \begin{matrix} \sqrt{\left( \frac{x}{4} - 1 \right)\left( 200 - \frac{3x}{2} \right)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \sqrt{(x - 4)(400 - 3x)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 4\ \ \ \ \ \\ x = \frac{400}{3} \\ x \in R\ \ \ \ \\ \end{matrix} \right.\ \]
\[2\ корня.\]
\[Всего\ корней:\]
\[130 + 2 = 132\ корня.\]
\[Ответ:132\ корня.\]
\[1)\ \left\{ \begin{matrix} \sin\frac{\text{πx}}{4} = 0\ \ \ \ \\ x + 3 > 0\ \ \ \ \ \\ 300 - x > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{\text{πx}}{4} = \pi k\ \ \ \ \ \ \ \ \ \ \ \\ - 3 < x < 300 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 4k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - 3 < x < 300 \\ \end{matrix} \right.\ \]
\[- 3 < x < 300:\]
\[x = 4k;\]
\[k = 0;1;2;\ldots;74;\]
\[система\ имеет\ 75\ корней.\]
\[2)\ \left\{ \begin{matrix} \lg{(x + 3)} + \lg(300 - x) = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \lg(x + 3) = \frac{1}{\lg(300 - x)} \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x + 3 = \frac{1}{300 - x} \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(x + 3)(300 - x) = 1\]
\[300x - x^{2} + 900 - 3x - 1 = 0\]
\[x^{2} - 297x - 899 = 0\]
\[D = 297^{2} + 4 \cdot 899 > 0\]
\[уравнение\ имеет\ два\ корня.\]
\[Всего\ корней:\]
\[75 + 2 = 77.\]
\[Ответ:\ 77\ корней.\ \]
\[1)\ \left\{ \begin{matrix} \cos\frac{\pi(x - 2)}{4} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left( \frac{x}{8} + 1 \right)\left( 150 - \frac{2x}{3} \right) \geq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{\pi(x - 2)}{4} = \frac{\pi}{2} + \pi k\ \ \ \ \ \ \ \\ (x + 8)(450 - 2x) \geq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 4 + 4k\ \ \ \ \ \ \ \\ - 8 \leq x \leq 225 \\ \end{matrix} \right.\ \]
\[- 8 \leq x \leq 225:\]
\[x = 4 + 4k;\]
\[k = - 3;\ - 2;\ldots;55;\]
\[система\ имеет\ 59\ корней.\]
\[2)\ \left\{ \begin{matrix} \sqrt{\left( \frac{x}{8} + 1 \right)\left( 150 - \frac{2x}{3} \right)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \sqrt{(x + 8)(450 - x)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = - 8\ \\ x = 225 \\ x \in R\ \ \ \ \\ \end{matrix} \right.\ \]
\[2\ корня.\]
\[Всего\ корней:\]
\[59 + 2 = 61\ корень.\]
\(Ответ:61\ корень.\)