\[\boxed{\mathbf{18.}}\]
\[\textbf{а)}\sin x\log_{11}\left( 4 - x^{2} \right) = 0\]
\[1)\ \left\{ \begin{matrix} \sin x = 0\ \ \ \ \\ 4 - x^{2} > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = \pi n\ \ \ \ \ \ \ \ \\ - 2 < x < 2 \\ \end{matrix} \right.\ \]
\[x = 0.\]
\[2)\ \left\{ \begin{matrix} \log_{11}\left( 4 - x^{2} \right) = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[4 - x^{2} = 1\]
\[x^{2} = 3\]
\[x = \pm \sqrt{3}.\]
\[Ответ:x = - \sqrt{3};x = 0;x = \sqrt{3}.\]
\[\textbf{б)}\cos x\log_{12}\left( 9 - x^{2} \right) = 0\]
\[1)\ \left\{ \begin{matrix} \cos x = 0\ \ \ \\ 9 - x^{2} \geq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = \frac{\pi}{2} + \pi n \\ - 3 < x < 3 \\ \end{matrix} \right.\ \]
\[x = \pm \frac{\pi}{2}.\]
\[2)\ \left\{ \begin{matrix} \log_{12}\left( 9 - x^{2} \right) = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[9 - x^{2} = 1\]
\[x^{2} = 8\]
\[x = \pm 2\sqrt{2}.\]
\[Ответ:x = \pm \frac{\pi}{2};x = \pm 2\sqrt{2}.\]
\[\textbf{в)}\ tgx\log_{13}\left( x^{2} - x - 6 \right) = 0\]
\[1)\ \left\{ \begin{matrix} tg\ x = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - x - 6 > 0 \\ \end{matrix} \right.\ \]
\[x^{2} - x - 6 = 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = 3;\ \ x_{2} = - 2\]
\[(x + 2)(x - 3) > 0\]
\[x < - 2;\ \ x > 3.\]
\[\left\{ \begin{matrix} x = \pi k;\ \ \ k \neq 0 \\ x < - 2;\ \ x > 3 \\ \end{matrix} \right.\ \]
\[2)\ \left\{ \begin{matrix} \log_{13}\left( x^{2} - x - 6 \right) = 0\ \ \\ - \frac{\pi}{2} + \pi n < x < \frac{\pi}{2} + \pi n \\ \end{matrix} \right.\ \]
\[x^{2} - x - 6 = 1\]
\[x^{2} - x - 7 = 0\]
\[D = 1 + 28 = 29\]
\[x = \frac{1 \pm \sqrt{29}}{2}.\]
\[Ответ:x = \pi k\ (k \neq 0);\]
\[\ \ x = \frac{1 \pm \sqrt{29}}{2}.\]
\[\textbf{г)}\ ctgx\log_{14}\left( x^{2} + x - 12 \right) = 0\]
\[1)\ \left\{ \begin{matrix} ctg\ x = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + x - 12 > 0 \\ \end{matrix} \right.\ \]
\[x^{2} + x - 12 = 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 12\]
\[x_{1} = - 4;\ \ x_{2} = 3.\]
\[(x + 4)(x - 3) > 0\]
\[x < - 4;\ \ \ x > 3.\]
\[\left\{ \begin{matrix} x = \frac{\pi}{2} + \pi n;\ \ n \neq 0;n \neq 1\ \\ x < - 4;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x > 3 \\ \end{matrix} \right.\ \]
\[2)\ \left\{ \begin{matrix} \log_{14}\left( x^{2} + x - 12 \right) = 0 \\ \pi k < x < \pi + \pi k\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + x - 12 = 1\]
\[x^{2} + x - 13 = 0\]
\[D = 1 + 52 = 53\]
\[x = \frac{- 1 \pm \sqrt{53}}{2}.\]
\[Ответ:x = \frac{\pi}{2} + \pi n\ (n \neq 0;n \neq 1);\]
\[x = \frac{- 1 \pm \sqrt{53}}{2}.\]