\[\boxed{\mathbf{17.}}\]
\[\textbf{а)}\ \left( x^{2} - 7x + 12 \right)\log_{31}{(x + 5)} = 0\]
\[1)\ \left\{ \begin{matrix} x^{2} - 7x + 12 = 0 \\ x + 5 > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x^{2} - 7x + 12 = 0 \\ x > - 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} - 7x + 12 = 0\]
\[x_{1} + x_{2} = 7;\ \ x_{1} \cdot x_{2} = 12\]
\[x_{1} = 4 > - 5 - корень;\ \ \]
\[x_{2} = 3 > - 5 - корень.\]
\[2)\ \left\{ \begin{matrix} \log_{31}{(x + 5)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x + 5 = 1\]
\[x = - 4.\]
\[Ответ:x = - 4;x = 3;x = 4.\]
\[\textbf{б)}\ \left( x^{2} + 3x - 4 \right)\log_{32}(3x + 7) = 0\]
\[1)\ \left\{ \begin{matrix} x^{2} + 3x - 4 = 0 \\ 3x + 7 > 0\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x^{2} + 3x - 4 = 0 \\ x > - \frac{7}{3} > - 2\frac{1}{3}\ \\ \end{matrix} \right.\ \]
\[x^{2} + 3x - 4 = 0\]
\[x_{1} + x_{2} = - 3;\ \ x_{1} \cdot x_{2} = - 4\]
\[x_{1} = - 4 - не\ подходит;\ \ \]
\[x_{2} = 1 > - 2\frac{1}{3} - корень.\]
\[2)\ \left\{ \begin{matrix} \log_{32}{(3x + 7)} = 0 \\ x \in R\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[3x + 7 = 1\]
\[3x = - 6\]
\[x = - 2.\]
\[Ответ:x = - 2;x = 1.\]