\[\boxed{\mathbf{49.}}\]
\[\textbf{а)}\ y = x^{2} - 4;\ \ X = R;\]
\[x^{2} - 4 = 0\]
\[x^{2} = 4\]
\[x = \pm 2.\]
\[y > 0\ при\]
\[\ x \in ( - \infty; - 2) \cup (2; + \infty);\]
\[y < 0\ при\ x \in ( - 2;2).\]
\[\textbf{б)}\ y = x^{2} - 4x\]
\[x^{2} - 4x = 0\]
\[x(x - 4) = 0\]
\[x = 0;\ \ \ x = 4.\]
\[y > 0\ при\ x \in ( - \infty;0) \cup (4; + \infty);\]
\[y < 0\ при\ x \in (0;4).\]
\[\textbf{в)}\ y = x^{2} - 5x + 4\]
\[x^{2} - 5x + 4 = 0\]
\[x_{1} + x_{2} = 5;\ \ \ x_{1} \cdot x_{2} = 4\]
\[x_{1} = 1;\ \ \ x_{2} = 4.\]
\[y > 0\ при\ x \in ( - \infty;1) \cup (4; + \infty);\]
\[y < 0\ при\ x \in (1;4).\]
\[\textbf{г)}\ y = 9 - x^{2}\]
\[9 - x^{2} = 0\]
\[x^{2} = 9\]
\[x = \pm 3.\]
\[y < 0\ при\ x \in ( - \infty; - 3) \cup (3; + \infty);\]
\[y > 0\ при\ x \in ( - 3;3).\]
\[\textbf{д)}\ y = - x^{2} + 2x\]
\[- x^{2} + 2x = 0\]
\[- x(x - 2) = 0\]
\[x = 0;\ \ \ x = 2.\]
\[y < 0\ при\ x \in ( - \infty;0) \cup (2; + \infty);\]
\[y > 0\ при\ x \in (0;2).\]
\[\textbf{е)}\ y = - 2x^{2} - 3x + 5\]
\[- 2x^{2} - 3x + 5 = 0\]
\[2x^{2} + 3x - 5 = 0\]
\[D = 9 + 40 = 49\]
\[x_{1} = \frac{- 3 + 7}{4} = 1;\ \ \]
\[x_{2} = \frac{- 3 - 7}{4} = - 2,5;\]
\[y < 0\ при\ \]
\[x \in ( - \infty; - 2,5) \cup (1; + \infty);\]
\[y > 0\ при\ x \in ( - 2,5;1).\]
\[\textbf{ж)}\ y = \frac{4}{x + 3} + 1;\ \ x \neq - 3;\]
\[\frac{4}{x + 3} + 1 = 0\ \ \ \ | \cdot (x + 3)\]
\[4 + x + 3 = 0\]
\[x + 7 = 0\]
\[x = - 7.\]
\[y > 0\ при\]
\[\ x \in ( - \infty; - 7) \cup ( - 3; + \infty);\]
\[y < 0\ при\ x \in ( - 7; - 3).\]
\[\textbf{з)}\ y = \frac{- 2}{x - 2} - 1;\ \ \ x \neq 2;\]
\[\frac{- 2}{x - 2} - 1 = 0\ \ \ \ \ \ | \cdot (x - 2)\]
\[- 2 - (x - 2) = 0\]
\[- 2 - x + 2 = 0\]
\[x = 0.\]
\[y < 0\ при\ x \in ( - \infty;0) \cup (2; + \infty);\]
\[y > 0\ при\ x \in (0;2).\]
\[\textbf{и)}\ y = - |x - 2| + 2 = 0\]
\[- |x - 2| + 2 = 0\]
\[- |x - 2| = - 2\]
\[|x - 2| = 2\]
\[x - 2 = 2\ \ \ \ \ \ x - 2 = - 2\]
\[x = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 0\]
\[y < 0\ при\ x \in ( - \infty;0) \cup (4; + \infty);\]
\[y > 0\ при\ x \in (0;4).\]