\[\boxed{\mathbf{46.}}\]
\[\textbf{а)}\ y = \log_{\frac{1}{2}}x;\ \ \ X > 0;\]
\[Пусть\ x_{1} < x_{2}:\]
\[y\left( x_{1} \right) = \log_{\frac{1}{2}}x_{1};\]
\[y\left( x_{2} \right) = \log_{\frac{1}{2}}x_{2};\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) = \log_{\frac{1}{2}}x_{1} -\]
\[- \log_{\frac{1}{2}}x_{2} = \log_{\frac{1}{2}}\frac{x_{1}}{x_{2}}\]
\[\log_{\frac{1}{2}}\frac{x_{1}}{x_{2}} > 0\]
\[x_{1} < x_{2}:\]
\[\frac{x_{1}}{x_{2}} < 1.\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) > 0\]
\[y\left( x_{1} \right) > y\left( x_{2} \right).\]
\[Функция\ является\ убывающей:\]
\[строго\ монотонна\ на\ всей\ \]
\[области\ определения.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{б)}\ y = \pi^{x};\ \ X \in R;\]
\[Пусть\ x_{1} < x_{2}:\]
\[y\left( x_{1} \right) = \pi^{x_{1}};\]
\[y\left( x_{2} \right) = \pi^{x_{2}};\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) = \pi^{x_{1}} - \pi^{x_{2}}\]
\[\pi^{x_{1}} - \pi^{x_{2}} < 0\]
\[\pi^{x_{1}} < \pi^{x_{2}}.\]
\[Значит:\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) < 0\]
\[y\left( x_{1} \right) < y\left( x_{2} \right).\]
\[Функция\ возрастающая:\]
\[строго\ монотонна\ на\ всей\ \]
\[области\ определения.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{в)}\ y = \sqrt{x};\ \ X \geq 0;\]
\[Пусть\ x_{1} < x_{2}:\]
\[y\left( x_{1} \right) = \sqrt{x_{1}};\]
\[y\left( x_{2} \right) = \sqrt{x_{2}};\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) = \sqrt{x_{1}} - \sqrt{x_{2}};\]
\[\sqrt{x_{1}} - \sqrt{x_{2}} < 0\]
\[\sqrt{x_{1}} < \sqrt{x_{2}};\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) < 0\]
\[y\left( x_{1} \right) < y\left( x_{2} \right).\]
\[Функция\ возрастающая:\]
\[строго\ монотонна\ на\ всей\]
\[\ области\ определения.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{г)}\ y = x^{- \frac{\pi}{2}};\ \ X > 0;\]
\[Пусть\ x_{1} < x_{2}:\]
\[y\left( x_{1} \right) = x_{1}^{- \frac{\pi}{2}};\]
\[y\left( x_{2} \right) = x_{2}^{- \frac{\pi}{2}};\]
\[x_{1}^{- \frac{\pi}{2}} = \left( \frac{1}{x_{1}} \right)^{\frac{\pi}{2}};\]
\[x_{2}^{- \frac{\pi}{2}} = \left( \frac{1}{x_{2}} \right)^{\frac{\pi}{2}};\]
\[\frac{1}{x_{1}} > \frac{1}{x_{2}}:\]
\[\left( \frac{1}{x_{1}} \right)^{\frac{\pi}{2}} - \left( \frac{1}{x_{2}} \right)^{\frac{\pi}{2}} > 0\]
\[\left( \frac{1}{x_{1}} \right)^{\frac{\pi}{2}} > \left( \frac{1}{x_{2}} \right)^{\frac{\pi}{2}};\]
\[y\left( x_{1} \right) - y\left( x_{2} \right) > 0\]
\[y\left( x_{1} \right) > y\left( x_{2} \right).\]
\[Функция\ является\ убывающей:\]
\[строго\ монотонна\ на\ всей\ \]
\[области\ определения.\]
\[Что\ и\ требовалось\ доказать.\]